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Mathematics: The Loss of Certainty by Morris Kline. New York: Fall 
River Press, 2011 [originally published in 1980 by Oxford University 
Press]. 464 pp. $19.95 (paperback). ISBN 9781435136069.

In 1980 Morris Kline wrote this engaging book, in which he took on many 
of the myths about the nature and history of mathematics. This new edition 
will probably be as seldom read as the original, which is too bad because it 
contains important messages, including perhaps some comfort for anomalies 
researchers. I will briefl y present an overview of the book’s contents, and 
then say what I think these comforts are.

· · ·
The ancient Greeks developed the seed of what we now think of as 

mathematics. Kline points out that their mathematical concepts arose from 
consideration of the natural world, and then the fact that numbers, shapes, 
and relationships corresponded to things in the real world convinced 
them that reality itself was in some mystical way generated by numerical 
principles. The regular patterns that they found in geometric forms and 
simple integers refl ected the regularities of nature, and so provided keys 
to understanding how things were, and why they were that way. The faith 
that mathematics lay behind the mundane world of observations became 
an unquestioned truth, at least as important as the practical techniques the 
Greeks devised, and passed along through the Middle East and the medieval 
period to modern Europe.

Of course Euclid’s Elements was the foundation of the Greek legacy. 
There is no question about the fact that it was designed in order to describe 
the spatial aspects of the world we live in. It was not a hodge-podge of facts 
bound loosely together because they all pertained to space, but rather an 
intricate structure, in which one started with defi nitions that clearly applied 
to real things (points, lines, and so on), and then through the power of 
deductive logic alone one discovered and even proved things that could be 
observed in the real world. As a model for what a deductive system should 
look like, it persevered well into the modern period in Europe. But perhaps 
more important than its specifi c insights and theorems, it justifi ed a view of 
mathematics as an engine with which the human mind could understand the 
natural world. It was a short step from there to believe that the natural world 
was designed and created on the basis of Euclid’s geometric truths. Since 
the religionists of modern Europe were quite eager to obtain a monopoly on 
the truth, they had little diffi culty convincing themselves that the hand of the 
Creator was to be seen in this remarkable relationship between apparently 
abstract mathematics and concrete reality.
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The idea that one learns about nature through 
observation and experiment developed slowly 
during the early modern period, but, as Kline 
argues, if mathematics represents truth, and truth 
is exemplifi ed in scientifi c observations, then 
mathematics must be the appropriate language for 
talking about science. Therefore, one whole strain 
of the development of mathematics, from the 15th 
to the beginning of the 19th centuries involved the 
increasing mathematization of science. The success 
of this enterprise had the effect of bolstering the 
belief that mathematics and truth were necessarily 
bound together.

The fi rst crack in this world view came in the 17th century, when a 
number of mathematicians simultaneously developed calculus (although 
Newton and Leibniz usually receive most of the credit). Kline does not 
mention it, but the basic ideas of calculus go back to Archimedes, who failed 
to invent it primarily due to an inadequate number system. All versions 
of calculus involved taking ratios of things where both the numerator and 
denominator tend to 0. The problem was in claiming that this operation 
had some kind of legitimacy. One might say that something like 1/0 could 
be interpreted as infi nity (whatever that was), but 0/0 would not yield to 
any sensible interpretation. The overwhelming fact about calculus was, 
however, that it was immensely useful. From the logical standpoint, this 
was a muddle, since one seemed to be performing nonsensical steps to 
consistently obtain correct answers. Virtually all of the arguments about the 
nonsensical steps were metaphysical, both on the side of Newton, Leibniz, 
and their adherents, as well as on the side of the opponents, notably Bishop 
Berkeley. As Kline points out, this unsatisfactory situation continued quite 
persistently for at least two centuries, until Cauchy provided the modern 
defi nition of a “limit.”

Despite the saving of calculus by Cauchy, Kline sees an even further 
unraveling of the logical status of mathematics in the 19th century. The fi rst 
diffi culty with the “mathematics = truth” equation was created by Hamilton 
in 1843 when he invented quaternions. He was trying to address exactly the 
same kinds of problems as Euclid, the description of three-dimensional space, 
but using algebraic methods rather than deductive geometry. Quaternions 
are intimately bound up with rotations, and as anyone familiar with Rubik’s 
Cube has discovered, rotations in three dimensions are not commutative 
(the order in which you perform a sequence of rotations is important to the 
result). Mathematicians in Hamilton’s time were so committed to the idea 
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that arithmetic (as they had learned it) was truth, that it was illogical (if not 
blasphemous) to talk of multiplication being non-commutative. Despite the 
historical importance of quaternions, they tended to fall by the wayside, 
only to be rediscovered recently in applications to aircraft electronics and 
video games.

The second diffi culty was closer to a disaster. The lore of centuries 
had held that Euclid’s geometry was the one and only true geometry. But 
there were a few things that were not entirely clear. One was whether 
Euclid’s axioms were independent of each other. Of particular concern was 
the “parallel postulate,” which can be stated several different ways. This 
axiom seemed to many mathematicians to be less self-evident than Euclid’s 
other assumptions, and since doubt appears as the enemy of truth, it was 
important to clear the matter up. One way of looking at the problem was to 
ask whether the parallel postulate could be deduced from the other axioms. 
If so, then it could be discarded as an axiom, and all the rest of Euclid’s work 
would remain as it was. But if not, the possibility presented itself that one 
might be able to state Euclid’s geometry in a form that simply did away with 
the parallel postulate, or perhaps replaced it with a different version. This 
latter step was taken by a number of 19th century mathematicians, creating 
a variety of “non-Euclidean” geometries. Again Kline points out that most 
mathematicians rejected these geometries as novelties, because they held 
to the “mathematics = truth” belief, and the real world was obviously 
Euclidean. When a special case of Riemann’s elliptical geometry was seen 
to apply to the surface of a sphere (where “straight line” means “great 
circle”), then because the sphere was also a part of Euclid’s geometry, the 
tide turned in favor of acceptance of non-Euclidean geometries.

Having seen their discipline pass successfully through several 
challenging storms, the mathematicians of the early 20th century expressed 
supreme confi dence that all of the potential logical problems with 
mathematics had been dealt with, and all that remained (in the words of 
Lord Kelvin) was to fi ll in the details. Figures such as Bertrand Russell and 
David Hilbert undertook the task of putting all of mathematics on a solid 
foundation of some version of logic. Hilbert in particular was certain that his 
“proof theory,” which we now call “formal systems,” was the correct way 
forward, and so he proclaimed that the end of the period of uncertainties in 
mathematics was at hand.

But once again fate conspired to dash such noble hopes. In the 
early 1930s Kurt Gödel proved that any system at least as complicated 
as arithmetic (in the mathematical sense) was either inconsistent (one 
could deduce contradictions) or incomplete (there were true statements 
that could never be proved from within the system). For centuries one of 
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the most troubling uncertainties that had bothered mathematicians was 
whether or not the systems of thought they had inherited were consistent. 
If Euclidean geometry was inconsistent, then it could not describe space 
(which evidently is consistent), but how could we tell? What was needed 
was a methodology for testing whether a given system was consistent. But 
Gödel’s result then said that if you achieved this for some system, you would 
have simultaneously found that there were truths in the system that could 
never be discovered, within the system. Applying this to all of mathematics, 
Gödel had shown that Hilbert’s program of reducing mathematics to formal 
systems was doomed. While on the one hand we can see Gödel’s result as a 
triumph of mathematics, on the other hand the victory seemed remarkably 
Pyrrhic.

Kline fi nishes his narrative with observations on the foundations of 
mathematics, especially the “axiom of choice” and Cantor’s “continuum 
hypothesis.” His opinions come out most strongly in the later chapters where 
he rails against the modern tendency of mathematicians to value abstract, 
literally useless creativity, as opposed to the direction of mathematics back 
to its roots, the solution of actual problems.

· · ·
Why should any of this be of interest to anomalies researchers? I think 

that much of it is, for the simple reason that woven in among the major 
themes I’ve described above, Kline includes rich detail about just how 
confused most mathematicians have been throughout most of the history 
of their discipline. He points out how vague Euclid’s actual defi nitions and 
axioms really are, and how much trouble this created for those who wanted 
to see geometry as being logically tight. He also emphasizes a fact that 
so far as I know has been completely omitted from mathematics texts and 
virtually all histories. Although negative numbers were known in medieval 
times, and the necessity of the square root of minus 1 since the 15th century, 
it was not until perhaps the late 18th century that mathematicians began 
to accept these as numbers. For the complex numbers, one can perhaps 
understand the reluctance, although Euler had already shown that they 
were no more complex than the two-dimensional plane. But the inability to 
conceive of the use of negatives shows a truly remarkable failure to employ 
the one feature of mathematics that everyone agreed to—that it should 
portray reality. It is even more astonishing to realize that Newton developed 
calculus while believing that subtraction of a larger number from a smaller 
one was a meaningless operation. Even further, insofar as mathematics being 
the model of a logical deductive system, all of the great mathematicians 
used complex numbers, and sometimes even negative numbers, to obtain 
their results. Again we see logic sacrifi ced for the sake of practicality, and 
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the hypocrisy of claiming the infallibility of the results because they were 
supposed to arise from a logically pure source.

It does not stop there. Consider the fundamental point in the defi nition 
of calculus, that ratios of quantities each approaching zero gives an 
uninterpretable 0/0. Consider the ratio (1 – x2)/(1 – x). As x goes to 1, the 
numerator and denominator each go to 0. But the expression is equal to 
1 + x, and everyone agreed that this goes to 1 as x goes to 0. In other 
words, there are pathetically simple examples to demonstrate that there is 
not necessarily any problem with the Newton/Liebniz infi nitesimal ratios. 
Moreover, Newton believed that all continuous functions were differentiable, 
fl ying n the face of truly trivial realistic counterexamples. I have seen this 
same pattern come up in how scholars of this and subsequent eras dealt 
with questions about probability. Often they endlessly debated points with 
barrages of philosophical arguments, when a few simple examples would 
have made the situation abundantly clear.

Although Kline mentions the fact that even into the 19th century 
mathematicians were confused about discontinuous functions, he does 
not mention the famous story about Fourier. In his investigation of the 
propagation of heat, Fourier asserted that any function could be approximated 
by a series of sines and cosines. His assertion so offended the leading lights 
of his day that its publication was blocked for more than a decade. (He was 
almost right; the notion of pointwise convergence needs to be replaced by 
convergence in L2 norm). Kline does, however, devote a section to how 
confused even the great mathematicians were about series (of numbers, not 
even functions).

Here is the lesson that I take from Kline’s history. In mathematics 
we have an excellent example of a method of thinking that laid claim to 
absolute truth, while it was in fact often wallowing in confusion and error. 
The situation was complicated by the fact that much of the mathematics 
that was created was both subtle and incredibly useful. But this turned out 
to be a double-edged sword, since every advance brought with it further 
confi dence in the underlying logic, and simply postponed the day of 
reckoning. The proponents of mathematics went vastly beyond the facts in 
their crowning of it as the “queen of sciences,” and were thus largely blind 
and resistant to most of the attempts to remove the evident problems. The 
history of mathematics is not what is taught in elementary science classes, 
an inexorable march of progress, but instead it lurched from success to 
disaster to success . . . and so on for centuries.

As a fi nal example of the hubris of conventional science, we can cite the 
topic in dynamic systems theory somewhat inappropriately called “chaos.” 
This could not have been covered by Kline, because Edward Lorenz did 
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not make his celebrated rediscovery of the phenomenon until several years 
after Kline’s book was published (and Kline died in 1992). But it would 
have suited Kline’s purpose admirably, since it was Henri Poincaré, just 
after the turn of the 19th century who discovered and fully appreciated the 
essential unsolvability of certain easily stated physical problems. Poincaré 
turned away from the abyss, and for 70 years no one else sneaked up to the 
edge to take a peek. And that, I think, helps to defi ne the role of anomalists 
in the 21st century; they are the ones who go up to the edge and peek.
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