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HIGHLIGHTS

Supradegeneracy is argued to subvert the Second Law under certain conditions. But the 
simple supradegenerate system that we consider does not, even though it fulfills two con-
ditions that we hypothesize. This online paper is a corrected revision of the print version. 

ABSTRACT

Supradegeneracy—degeneracy G (E) increasing with increasing energy E faster than the 
Boltzmann factor e–E/kT decreases with increasing E—has been investigated with respect 
to its possibly engendering challenges to the Second Law of Thermodynamics. Supra-
degeneracy alone does not challenge the Second Law: Systems manifesting suprade-
generacy yet compliant with the Second Law are ubiquitous. If there is to be even the 
possibility that a system manifesting supradegeneracy can challenge the Second Law, 
additional requirements over and above supradegeneracy per se must also be fulfilled. 
We hypothesize what prima facie seem to be the two most obvious of these additional 
requirements. We then consider a simple system manifesting supradegeneracy and also 
fulfilling these two requirements. At least for the system that we consider, the answer 
seems to be negative: The Second Law seems not challenged. But understanding why the 
answer is at least apparently negative for the supradegenerate system that we consider 
may help in understanding of what at least prima facie seem to be positive results via 
analyses, including computer simulations but to the best knowledge of the author at 
the time of this writing not yet experimental tests, of other supradegenerate systems: 
of what is the minimal complete set of additional requirements—over and above supra-
degeneracy per se—that must be fulfilled by a supradegenerate system if it is to chal-
lenge the Second Law. Moreover, even if it turns out that all supradegenerate systems 
do not challenge the Second Law, they could still be useful even within its strictures. 
The same principles apply with respect to both supradegeneracy and anti-supradegen-
eracy [degeneracy G(E) decreasing with increasing energy E], so a brief discussion of 
anti-supradegeneracy suffices. It is followed by proposal of simple experimental tests of 
our system: I hope, albeit probably in vain, to be proven wrong: Only experiments—the 
final arbiter—can decide the issue for sure! Concluding remarks are provided describing 
implications if the Second Law could be violated by any means whatsoever (supradegen-
eracy, anti-supradegeneracy, and/or otherwise).
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I. INTRODUCTION

The probability P (E) that a particle in thermodynamic 
equilibrium with a heat reservoir at temperature T has a 
given energy E is proportional to (i) the degeneracy G(E) of 
the energy level E of the particle, i.e., the number of states 
comprising this level, and (ii) the Boltzmann factor e–E/kT, 
where k is Boltzmann’s constant. The Boltzmann factor 
e–E/kT is proportional to the degeneracy G'(Etotal – E) of the 
energy level Etotal – E of the heat reservoir, corresponding to 
the particle having energy E and hence the heat reservoir 
having energy Etotal –E; the total energy of the particle-plus-
heat-reservoir system being Etotal. Thus

					                       (1)

In Equation (1), the unprimed quantities refer to the 
particle, the primed ones to the heat reservoir, and the 
double-primed ones to the combined particle/heat-reser-
voir system. The third step of Equation (1) shortens nota-
tion. The degeneracies in the numerators of Equation (1) 
are those of specific, i.e., individual, energy levels; the sums 
in the denominators of Equation (1) are over all energy lev-
els. The last step of Equation (1) assumes weak coupling 
between the particle and the heat reservoir, which is ob-
tained in most if not all practicable particle/heat-reservoir 
systems, and which we assume. [If the coupling is not 
weak: (i) the states of the particle and heat reservoir are 
at least somewhat correlated, so G' < GG' and (ii) owing to 
the interaction energy between the particle and the heat 
reservoir, Etotal is slightly less than the sum of the energies 
of the particle and the heat reservoir.]

Supradegeneracy—degeneracy G(E) of the energy 
level E of the particle increasing with increasing energy E 
faster than the Boltzmann factor e–E/kT decreases with in-
creasing E—has been investigated with respect to its pos-
sibly engendering challenges to the Second Law of Ther-
modynamics (Sheehan & Schulman, 2019; Sheehan, 2019, 
2020a, 2020b, 2001–2022, 2018–2022).

But supradegeneracy alone does not challenge the 
Second Law: systems manifesting supradegeneracy yet 
compliant with the Second Law are ubiquitous. If a system 
manifesting supradegeneracy is to challenge the Second 
Law, additional requirements over and above supradegen-
eracy per se must also be fulfilled. As of this writing, it is 
not completely evident to the author what these additional 
requirements are. However, re-emphasizing that systems 
manifesting supradegeneracy yet compliant with the Sec-
ond Law are ubiquitous, it is completely evident that they 
must exist. But we will provide tentative educated guesses, 
i.e., tentative conjectures, concerning what on the face of 

it seem to be the two most obvious of these additional re-
quirements.

Any system with sufficiently many degrees of free-
dom that is compliant with the Second Law is nonetheless 
supradegenerate with respect to all energies less than its 
most probable energy (Reif, 2009, sections 2.4, 2.5, 3.7; Kit-
tel, 2004, section 11). And “sufficiently many” does not have 
to be much larger than unity. The three-dimensional Max-
wellian distribution for thermal translational kinetic ener-
gies—which is certainly within the strictures of the Second 
Law—manifests G(E)     El/2 and hence is supradegenerate 
with respect to all thermal translational kinetic energies less 
than the most probable one kT/2, at which El/2e–E/kT is maxi-
mized [P(E) increases with increasing E if 0    E < kT/2] (Reif, 
2009, section 7.9; Kittel, 2004, section 13). But, by contrast, 
the one-dimensional Maxwellian distribution for thermal 
translational kinetic energies—which also is certainly within 
the strictures of the Second Law—manifests G(E)    E–l/2 and 
hence is anti-supradegenerate with respect to any thermal 
translational kinetic energy [G(E) decreases with increasing 
E and hence P(E) decreases with increasing E faster than the 
Boltzmann factor e–E/kT for all E] (Reif, 2009, section 7.10). 
The two-dimensional Maxwellian distribution for thermal 
translational kinetic energies—which also is certainly within 
the strictures of the Second Law—manifests G(E) indepen-
dent of E and hence is a borderline case [P(E) decreases with 
increasing E exactly as the Boltzmann factor e–E/kT for all E] 
(Garrod, 1995, exercise 1.18).

Thus our two tentative additional requirements: (R1) 
Supradegeneracy must obtain with respect to one degree 
of freedom. (R2) The pertinent energy associated with this 
one degree of freedom must a potential energy. R1 is at 
least partially justified in light of the immediately preced-
ing paragraph. R2 is at least partially justified because, at 
thermodynamic equilibrium, kinetic energy is independent 
of position. Hence only potential energy can modify prob-
abilities as a function of position (Garrod, 1995, exercises 
7.29, 7.30; Tolman, 1987).1 Even if R1 and R2 are among the 
valid additional requirements, they cannot be the only two, 
because there exist systems manifesting supradegeneracy 
and that also fulfill them yet do not challenge the Second 
Law. But hopefully our hypothesizing R1 and R2 as neces-
sary but not sufficient additional requirements seems at 
least a step forward. We denote by R* the minimal complete 
set of additional requirements (tentatively conjectured to 
include R1 and R2)—over and above supradegeneracy per 
se—that must be fulfilled by a supradegenerate system if it 
is to challenge the Second Law.

For example, any spontaneous endothermic (physi-
cal, chemical, nuclear, etc.) process manifests suprade-
generacy and also fulfills both R1 and R2—yet is Second-
Law–compliant. Let ∆E be the energy difference between 

the particle having energy and hence the heat reservoir having energy; the total energy
of the particle-plus-heat-reservoir system being . Thus

  
  
  


    
    








 (1)

In Eq. (1), the unprimed quantities refer to the particle, the primed ones to the heat reservoir,
and the double-primed ones to the combined particle/heat-reservoir system. The third step of
Eq. (1) shortens notation. The degeneracies in the numerators of Eq. (1) are those of specific,
i.e., individual, energy levels; the sums in the denominators of Eq. (1) are over all energy levels.
The last step of Eq. (1) assumes weak coupling between the particle and the heat reservoir, which
obtains in most if not all practicable particle/heat-reservoir systems, and which we assume. [If
the coupling is not weak: (i) the states of the particle and heat reservoir are at least somewhat
correlated, so    and (ii) owing to the interaction energy between the particle and the heat
reservoir,  is slightly less than the sum of the energies of the particle and the heat reservoir.]

Supradegeneracy — degeneracy   of the energy level  of the particle increasing with
increasing energy  faster than the Boltzmann factor  decreases with increasing  —
has been investigated with respect to its possibly engendering challenges to the Second Law of
Thermodynamics.1–6

But supradegeneracy alone does not challenge the Second Law: systems manifesting suprade-
generacy yet compliant with the Second Law are ubiquitous. If a system manifesting supradegen-
eracy is to challenge the Second Law, additional requirements — over and above supradegeneracy
per se — must also be fulfilled. As of this writing, it is not completely evident to the author what
these additional requirements are — but, re-emphasizing that systems manifesting supradegener-
acy yet compliant with the Second Law are ubiquitous — it is completely evident that they must
exist. But we will provide tentative educated guesses, i.e., tentative conjectures, concerning what
on the face of it seem to be the two most obvious of these additional requirements.

Any system with sufficiently many degrees of freedom that is compliant with the Second Law is
nonetheless supradegenerate with respect to all energies less than its most probable energy.7,8 And
“sufficiently many” does not have to be much larger than unity. The three-dimensional Maxwellian
distribution for thermal translational kinetic energies — which is certainly within the strictures of
the Second Law — manifests     and hence is supradegenerate with respect to all
thermal translational kinetic energies less than the most probable one  at which 
is maximized [  increases with increasing  if     ].9,10 But, by contrast, the
one-dimensional Maxwellian distribution for thermal translational kinetic energies — which also
is certainly within the strictures of the Second Law — manifests     and hence is
anti-supradegenerate with respect to any thermal translational kinetic energy [  decreases
with increasing  and hence   decreases with increasing  faster than the Boltzmann factor
 for all ].11 The two-dimensional Maxwellian distribution for thermal translational kinetic
energies — which also is certainly within the strictures of the Second Law — manifests  
independent of  and hence is a borderline case [  decreases with increasing  exactly as the
Boltzmann factor  for all ].12

Thus our two tentative additional requirements: (R1) Supradegeneracy must obtain with re-
spect to one degree of freedom. (R2) The pertinent energy associated with this one degree of
freedom must a potential energy. R1 is at least partially justified in light of the immediately pre-
ceding paragraph. R2 is at least partially justified because, at thermodynamic equilibrium, kinetic
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Supradegeneracy obtains in Segment  because [within the restriction    

] we set

       

     
     (5)

Because Segment  is vertical in its entirety, in Segment  the probability of the particle being
in a given tiny altitude interval  of the tube at altitude  is the same as of it being in a given tiny
length interval , i.e., in accordance with the law of isothermal atmospheres17,18,

     










            (6)

Degeneracy   corresponding to any given tiny altitude interval   

      


 is

proportional to the length  of tube in this tiny altitude interval , i.e.,

       


      (7)

At altitude  in Segment ,

               
     (8)

By contrast, in Segment ,

             constant. (9)

Thus: (i) By Eqs. (4), (5), (7), and (8),   increases with increasing  — supra-
degeneracy!1–6 — but by Eqs. (3), (6), and (9)   decreases with increasing  in accordance
with the law of isothermal atmospheres [Eq. (3)].17,18 But (ii) by Eqs. (3), (6), and (9) both  
and   decrease with increasing  at the same rate as   — in accordance with the law
of isothermal atmospheres [Eq. (3)].17,18

III. IMPLICATIONS PERTINENT TO THE SECOND LAW OF THERMODYNAMICS

Now the uppermost question pertinent to the Second Law of Thermodynamics: Will the particle
spontaneously circulate, manifesting spontaneous momentum flow27 — flow that is both (i) sustain-
ing and (ii) robust, i.e., capable of surviving disturbances and of restoring itself if it is destroyed27

— either ascending in Segment , descending in Segment , and completing the circuit by return-
ing to the bottom of Segment  via Segment  — or in the opposite (counterclockwise) direction?
It doesn’t seem so. Even though   increases with increasing  as per Eqs. (4), (5), (7), and
(8) — supradegeneracy!1–6 — and   decreases with increasing  in accordance with the law
of isothermal atmospheres [Eq. (3)] as per Eqs. (3), (6), and (9).17,18 And even though because
the entire tube is of constant internal diameter, we avoid the impediments to cyclical motion of
the particle owing to employing as Segment  a birch trumpet16, i.e., a cone flaring upwards such
that its horizontal cross-sectional area   increases with increasing  as    : see,
in Ref. 4, the paragraph immediately following that containing Figure 4, and Note 3. And even
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(Sheehan & Schulman 2019; Sheehan 2019, 2020a, 2020b, 
2001–2022, 2018–2022). 

In Section III, implications pertinent to the Second 
Law are discussed.

In Section IV, we provide a brief discussion of (i) anti-
supradegeneracy: G(E) decreasing with increasing E and 
hence P(E) decreasing with increasing E faster than the 
Boltzmann factor e–E/kT and (ii) strong anti-supradegen-
eracy: G(E) decreasing with increasing E faster than the 
Boltzmann factor e–E/kT and hence P(E) decreasing with in-
creasing E faster than the Boltzmann factor e–E/kT squared, 
i.e., faster than e–2E/kT. The same principles apply with re-
spect to both supradegeneracy and anti-supradegeneracy 
(whether strong or not), so a brief discussion of anti-supra-
degeneracy suffices. We show that modifying our system 
so as to exploit anti-supradegeneracy (indeed strong anti-
supradegeneracy)—either alone or together with suprade-
generacy—makes no difference in our results.

In Section V, simple experimental tests of the system 
discussed in Sections II, III, and IV are proposed. I hope, albe-
it probably in vain, to be proven wrong! Only experiments can 
decide the issue for sure: Experiments are the final arbiter!

In Section VI, concluding remarks are provided de-
scribing implications if the Second Law could be violated 
by any means whatsoever [supradegeneracy, anti-suprade-
generacy (whether strong or not), and/or otherwise].

II. DESCRIPTION AND DISCUSSION 
OF OUR SYSTEM

We now describe our simple system manifesting 
supradegeneracy (and/or strong anti-supradegeneracy, 
as will be discussed in Sections IV and V). Our system 
consists of a single particle of mass m confined within a 
closed hollow tube of constant internal diameter (and 
also constant external diameter). An illustration of the 
tube is shown in Figure 1. The particle could be an atom, 
molecule, Brownian particle, etc. It is maintained in 
thermodynamic equilibrium with a heat reservoir at 
temperature T via collisions with the interior surface of 
the tube, and is in a uniform gravitational field g (not to 
be confused with degeneracy G). It can be construed as a 
one-particle isothermal atmosphere. Generalization to a 
system containing n like particles (an n-particle isothermal 
atmosphere) is straightforward. (Of course, if n > 1, 
thermodynamic equilibrium is maintained via interparticle 
collisions as well as via collisions with the interior surface of 
the tube, interparticle collisions becoming more important 
with increasing n.)

The tube (see Figure 1) comprises three segments: 
Segment 0 is horizontal in its entirety at the datum alti-
tude z = 0. Segment 1 is vertical at its join with Segment 0 

a lower-energy reactant configuration and a higher-energy 
product configuration. Note that: (i) In accordance with 
R1, the reaction coordinate (the extent of reaction toward 
completion) represents one degree of freedom. (ii) In ac-
cordance with R2, ∆E is a potential-energy difference: at 
thermodynamic equilibrium with a heat reservoir at tem-
perature T, both reactant and product species have equal 
thermal translational kinetic energies per degree of free-
dom. Let Grct and Gprd be the degeneracies of the reactant 
configuration and product configuration, respectively. 
Then the equilibrium constant for this process if occur-
ring at thermodynamic equilibrium with a heat reservoir at 
temperature T is

                                                                                                    (2)

If                 > e  , Keq > 1: the endothermic process is 
spontaneous, i.e., driven by the Second Law via supradegen-
eracy, despite both R1 and R2 also being fulfilled. Indeed, 
if the products are swept away from the reaction vessel, 
Gprd increases almost without limit: Hence for all practical 
purposes                                                             

		  	 	(3)

i.e., the Second Law drives the endothermic process to 
completion via extreme supradegeneracy, despite both R1 
and R2 also being fulfilled.

There are innumerable other examples as well, includ-
ing the system that we will consider.

In Section II, we consider a simple system manifesting 
supradegeneracy. At least for the system that we consider, 
the answer seems to be negative: despite supradegeneracy 
and despite both R1 and R2 also being fulfilled, the Second 
Law is at least apparently not challenged.

Two points: (i) Understanding why the result is at 
least apparently negative for the supradegenerate sys-
tem that we consider may help in understanding what at 
least prima facie seems to be positive results obtained via 
analyses, including computer simulations but to the best 
knowledge of the author at the time of this writing not 
yet experimental tests, of other supradegenerate systems 
(Sheehan & Schulman 2019; Sheehan 2019, 2020a, 2020b, 
2001–2022, 2018–2022): of what is the minimal complete 
set of additional requirements R* (tentatively conjectured 
to include R1 and R2)—over and above supradegeneracy 
per se—that must be fulfilled by a supradegenerate system 
if it is to challenge the Second Law. Moreover (ii) Even if 
the negative result for the supradegenerate system that 
we consider does turn out to be similarly true for all sys-
tems manifesting supradegeneracy, such systems could 
still be useful even within the strictures of the Second Law 

energy is independent of position. Hence only potential energy can modify probabilities as a func-
tion of position.13–15 Even if R1 and R2 are among the valid additional requirements, they cannot
be the only two, because there exist systems manifesting supradegeneracy and that also fulfill them
yet do not challenge the Second Law. But hopefully our hypothesizing R1 and R2 as necessary but
not sufficient additional requirements seems at least a step forward. We denote by R* the minimal
complete set of additional requirements (tentatively conjectured to include R1 and R2) — over
and above supradegeneracy per se — that must be fulfilled by a supradegenerate system if it is to
challenge the Second Law.
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ration, respectively. Then the equilibrium constant for this process if occurring at thermodynamic
equilibrium with a heat reservoir at temperature  is
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at the datum altitude z = 0. At z > 0, Segment 1 curves away 
from the vertical at an angle    (z) that increases monotoni-
cally with increasing z, but within the upper bound    rad. 
The top of Segment 1, at which   (z) =  (zmax) <    rad, joins 
with the top of Segment 2, which is vertical in its entirety, 
at altitude zmax. The bottom of Segment 2 vertically joins 
with Segment 0 at the datum altitude z = 0.

Thus the gravitational potential energy E = mgz of our 
particle relative to the datum altitude z = 0 has as its mini-
mum possible value Emin = 0 and as its maximum possible 
value Emax = mgzmax. Hence in accordance with R1 and R2 the 
pertinent energy E = mgz of our system is a potential energy 
(gravitational potential energy) associated with one degree 
of freedom (the vertical direction z).

Because the entire tube is of constant internal diam-
eter, we avoid the impediments to cyclical motion of the 
particle owing to, for example, employing as Segment 1 a 
birch trumpet,2 i.e., a cone flaring upwards: in particular, 
flaring upwards fast enough so that its horizontal cross-
sectional area A (z) increases with increasing z faster than 
the Boltzmann factor e–E/kT = e–mgz/kT decreases with increas-
ing  z—flaring  upwards  such  that  A (z)  =  A (z = 0) eNE/kT
= A (z = 0) eNmgz/kT (N > 1): see, in Sheehan (2020b, the para-
graph immediately following that containing figure 4 and 
note 3; 2020a).
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In Segment 0 and hence at the datum altitude z = 0, the 
probability of the particle being in a given tiny length inter-
val dL of the tube is P0,LdL. In both Segment 1 and Segment 
2, the probability of the particle being in a given tiny length 
interval dL of the tube at altitude z is, in accordance with 
the law of isothermal atmospheres (Reif, 2009, sections 2.3 

and 6.1–6.4, especially section 6.3 subsection “Molecule in 
an ideal gas in the presence of gravity”; Schroeder, 2000),
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We note that the law of isothermal atmospheres (Reif, 
2009, sections 2.3 and 6.1–6.4, especially section 6.3 sub-
section “Molecule in an ideal gas in the presence of grav-
ity”; Schroeder, 2000, section 1.2, especially problem 1.16 
and problem 3.37, chapter, especially sections 6.1, 6.2, and 
problem 6.14) is of course a special case of the Boltzmann 
(or canonical) distribution with E = mgz (Schroeder, 2000, 
section 6.1, especially p. 223; Reif, 2009, section 6.2, es-
pecially p. 205; Kauzmann, 1967). (Of course, the terms 
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223; Reif, 2009, section 6.2, especially p. 205; Kauzmann, 
2000]).
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In Segment  and hence at the datum altitude   , the probability of the particle being
in a given tiny length interval  of the tube is . In both Segment  and Segment , the
probability of the particle being in a given tiny length interval  of the tube at altitude  is, in
accordance with the law of isothermal atmospheres17,18,
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The terms “barometric equation”20 or “hydrostatic equation”20–25 are sometimes employed to
denote hydrostatic equilibrium20–25 but not necessarily thermodynamic equilibrium17–21,26. Ther-
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essarily also at hydrostatic equilibrium: this obtains in particular for a one-particle isothermal
atmosphere in accordance with Eq. (3). By contrast, Earth’s atmosphere and oceans are almost al-
ways at hydrostatic equilibrium (or at least very nearly so) but not at thermodynamic equilibrium.
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Supradegeneracy obtains in Segment  because [within the restriction    
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] we set
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Because Segment  is vertical in its entirety, in Segment  the probability of the particle being
in a given tiny altitude interval  of the tube at altitude  is the same as of it being in a given tiny
length interval , i.e., in accordance with the law of isothermal atmospheres17,18,
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Degeneracy   corresponding to any given tiny altitude interval   

      


 is

proportional to the length  of tube in this tiny altitude interval , i.e.,

       
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     (8)

By contrast, in Segment ,

             constant. (9)

Thus: (i) By Eqs. (4), (5), (7), and (8),   increases with increasing  — supra-
degeneracy!1–6 — but by Eqs. (3), (6), and (9)   decreases with increasing  in accordance
with the law of isothermal atmospheres [Eq. (3)].17,18 But (ii) by Eqs. (3), (6), and (9) both  
and   decrease with increasing  at the same rate as   — in accordance with the law
of isothermal atmospheres [Eq. (3)].17,18

III. IMPLICATIONS PERTINENT TO THE SECOND LAW OF THERMODYNAMICS

Now the uppermost question pertinent to the Second Law of Thermodynamics: Will the particle
spontaneously circulate, manifesting spontaneous momentum flow27 — flow that is both (i) sustain-
ing and (ii) robust, i.e., capable of surviving disturbances and of restoring itself if it is destroyed27

— either ascending in Segment , descending in Segment , and completing the circuit by return-
ing to the bottom of Segment  via Segment  — or in the opposite (counterclockwise) direction?
It doesn’t seem so. Even though   increases with increasing  as per Eqs. (4), (5), (7), and
(8) — supradegeneracy!1–6 — and   decreases with increasing  in accordance with the law
of isothermal atmospheres [Eq. (3)] as per Eqs. (3), (6), and (9).17,18 And even though because
the entire tube is of constant internal diameter, we avoid the impediments to cyclical motion of
the particle owing to employing as Segment  a birch trumpet16, i.e., a cone flaring upwards such
that its horizontal cross-sectional area   increases with increasing  as    : see,
in Ref. 4, the paragraph immediately following that containing Figure 4, and Note 3. And even
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In Segment  and hence at the datum altitude   , the probability of the particle being
in a given tiny length interval  of the tube is . In both Segment  and Segment , the
probability of the particle being in a given tiny length interval  of the tube at altitude  is, in
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We note that the law of isothermal atmospheres17,18 is of course a special case of the Boltzmann
(or canonical) distribution with   .19–21 (Of course, the terms “Boltzmann distribution” and
“canonical distribution” are synonymous.19–21)

The terms “barometric equation”20 or “hydrostatic equation”20–25 are sometimes employed to
denote hydrostatic equilibrium20–25 but not necessarily thermodynamic equilibrium17–21,26. Ther-
modynamic equilibrium17–21,26 necessarily implies hydrostatic equilibrium,20–25 but not necessarily
vice versa17–26. Thus any isothermal atmosphere is at thermodynamic equilibrium and hence nec-
essarily also at hydrostatic equilibrium: this obtains in particular for a one-particle isothermal
atmosphere in accordance with Eq. (3). By contrast, Earth’s atmosphere and oceans are almost al-
ways at hydrostatic equilibrium (or at least very nearly so) but not at thermodynamic equilibrium.

Also in accordance with the Boltzmann (or canonical) distribution,19–21 in Segment , the prob-
ability of the particle being in a given tiny altitude interval  of the tube at altitude  is
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			    (5)

Supradegeneracy obtains in Segment 1 because [with-
in the restriction    (zmax) <    rad] we set

                                                                                                 (6)	

Because Segment 2 is vertical in its entirety, in Seg-
ment 2 the probability of the particle being in a given tiny 
altitude interval dz of the tube at altitude z is the same as 
of it being in a given tiny length interval dL, i.e., in accor-
dance with the law of isothermal atmospheres (Reif, 2009, 
sections 2.3 and 6.1–6.4, in section 6.3 see especially sub-
section “Molecule in an ideal gas in the presence of grav-
ity”; Schroeder, 2000, section 1.2 especially problem 1.16, 
problem 3.37, chapter 6 especially 6.1 and 6.2 and problem 
6.14),

						    
					          (7)

Degeneracy G (z) corresponding to any given tiny al-
titude interval                                                     is proportional 
to the length dL of tube in this tiny altitude interval dz, i.e.,

							     
				                                          (8)

At altitude z in Segment 1,

							     
				                                          (9) 

By contrast, in Segment 2,

                                                                                                      (10)

Thus: (i) By Equations (5), (6), (8), and (9), Pl,z(z) increas-
es with increasing z—supradegeneracy (Sheehan, & Schul-
man 2019; Sheehan 2019, 2020a, 2020b, 2001–2022, 2018–
2022)! But by Equations (4), (7), and (10), P2,z (z) decreases 
with increasing z in accordance with the law of isothermal 
atmospheres [Equation (3)]. But (ii) by Equations (4), (7), 
and (10), both Pl,L (z) and P2,L (z) decrease with increasing z 
at the same rate as P2,z (z)—in accordance with the law of 
isothermal atmospheres [Equation (4)] (Reif, 2009, sections 
2.3 and 6.1–6.4, section 6.3 see especially subsection “Mol-

ecule in an ideal gas in the presence of gravity”; Schroeder, 
2000, section 1.2 especially problems 1.16 and 3.37, chapter 
6, especially sections 6.1, 6.2, problem 6.14).

III. IMPLICATIONS PERTINENT TO THE 
SECOND LAW OF THERMODYNAMICS

Now the uppermost question pertinent to the Sec-
ond Law of Thermodynamics is: Will the particle sponta-
neously circulate, manifesting spontaneous momentum 
flow (Zhang & Zhang, 1992)—flow that is both (i) sustain-
ing and (ii) robust, i.e., capable of surviving disturbances 
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In Segment  and hence at the datum altitude   , the probability of the particle being
in a given tiny length interval  of the tube is . In both Segment  and Segment , the
probability of the particle being in a given tiny length interval  of the tube at altitude  is, in
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modynamic equilibrium17–21,26 necessarily implies hydrostatic equilibrium,20–25 but not necessarily
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essarily also at hydrostatic equilibrium: this obtains in particular for a one-particle isothermal
atmosphere in accordance with Eq. (3). By contrast, Earth’s atmosphere and oceans are almost al-
ways at hydrostatic equilibrium (or at least very nearly so) but not at thermodynamic equilibrium.

Also in accordance with the Boltzmann (or canonical) distribution,19–21 in Segment , the prob-
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Thus: (i) By Eqs. (4), (5), (7), and (8),   increases with increasing  — supra-
degeneracy!1–6 — but by Eqs. (3), (6), and (9)   decreases with increasing  in accordance
with the law of isothermal atmospheres [Eq. (3)].17,18 But (ii) by Eqs. (3), (6), and (9) both  
and   decrease with increasing  at the same rate as   — in accordance with the law
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spontaneously circulate, manifesting spontaneous momentum flow27 — flow that is both (i) sustain-
ing and (ii) robust, i.e., capable of surviving disturbances and of restoring itself if it is destroyed27

— either ascending in Segment , descending in Segment , and completing the circuit by return-
ing to the bottom of Segment  via Segment  — or in the opposite (counterclockwise) direction?
It doesn’t seem so. Even though   increases with increasing  as per Eqs. (4), (5), (7), and
(8) — supradegeneracy!1–6 — and   decreases with increasing  in accordance with the law
of isothermal atmospheres [Eq. (3)] as per Eqs. (3), (6), and (9).17,18 And even though because
the entire tube is of constant internal diameter, we avoid the impediments to cyclical motion of
the particle owing to employing as Segment  a birch trumpet16, i.e., a cone flaring upwards such
that its horizontal cross-sectional area   increases with increasing  as    : see,
in Ref. 4, the paragraph immediately following that containing Figure 4, and Note 3. And even
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though both R1 and R2 are also fulfilled. Because the particle, if allowed to move through a hor-
izontal tube segment, Segment  , connecting Segments  and  at any altitude , would tend
to drift in the direction of increasing   — not in the direction of increasing  :   —
not   — is the driver. But, repeating Eq. (3), at any altitude ,

        
 (10)

Thus   is constant within any such horizontal tube segment, Segment , at any altitude 
— and equal to      at this altitude . Hence if there is a horizontal tube segment,
Segment , connecting Segments  and  at any altitude , the particle would be equally likely
to drift either from Segment  to Segment  or vice versa: random Brownian motion. [Segment 
is Segment    . Even though    


 at the top of Segment  per se, there must

be at least a tiny horizontal region at its join with the top of Segment , at altitude . Alter-
natively, we can construe a short horizontal tube segment, Segment  , connecting the tops
of Segments  and  at altitude .] Hence the particle’s motion anywhere within our closed
tube would be random Brownian motion: it would not spontaneously circulate: either ascending
in Segment , descending in Segment , and completing the circuit by returning to the bottom of
Segment  via Segment — or in the opposite (counterclockwise) direction. It would not manifest
the spontaneous momentum flow27 that would be required to challenge the Second Law.

It doesn’t seem to matter whether there is only one particle in our tube — a one-particle isother-
mal atmosphere — or an isothermal atmosphere comprised of two, three, or many particles. As
per Eqs. (3) and (10), the smoothed-out long-time-average density of one particle as a function
of altitude  in our tube corresponds to thermodynamic equilibrium17–21,26 and hence also to hy-
drostatic equilibrium.20–25 Thus also the density of an isothermal atmosphere comprised of two,
three, or many such particles as a function of altitude  in our tube would correspond to thermo-
dynamic equilibrium17–21,26 and hence also to hydrostatic equilibrium20–25. Thus also the density
of any isothermal fluid (gas or liquid) as a function of altitude  in our tube would correspond to
thermodynamic equilibrium17–21,26 and hence also to hydrostatic equilibrium.20–25 If there is only
one particle in our tube, thermalization occurs via collisions with the inner wall of the tube; if
there are   , via interparticle collisions as well as via collisions with the inner walls of the tube
(interparticle collisions becoming more important with increasing ) — but this seems to make
no difference. That is why spontaneous momentum flow27 cannot be manifested, irrespective of
the nature or density of the fluid (gas or liquid) in our tube. (We re-emphasize that thermody-
namic equilibrium17–21,26 necessarily implies hydrostatic equilibrium,20–25 but not necessarily vice
versa.17–26)

Thus, at least in our system, supradegeneracy at least apparently does not challenge the Sec-
ond Law of Thermodynamics — despite both R1 and R2 also being fulfilled. But it seems to be
an open question whether or not this negative result is similarly true for all systems manifesting
supradegeneracy1–6, especially given that analyses, including computer simulations but to the best
knowledge of the author at the time of this writing not yet experimental tests, of other suprade-
generate systems at least prima facie seem to yield positive results.1–6 The crucial question seems
to be: What is the minimal complete set of additional requirements R* (tentatively conjectured
to include R1 and R2) — over and above supradegeneracy per se — that must be fulfilled by a
supradegenerate system if it is to challenge the Second Law?

But even if our negative result does turn out to be similarly true for all systems manifesting
supradegeneracy, such systems could still be useful even within the strictures of the Second Law.1–6
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Figure 1: Illustration of the tube
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in a given tiny altitude interval  of the tube at altitude  is the same as of it being in a given tiny
length interval , i.e., in accordance with the law of isothermal atmospheres17,18,
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
      


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Thus: (i) By Eqs. (4), (5), (7), and (8),   increases with increasing  — supra-
degeneracy!1–6 — but by Eqs. (3), (6), and (9)   decreases with increasing  in accordance
with the law of isothermal atmospheres [Eq. (3)].17,18 But (ii) by Eqs. (3), (6), and (9) both  
and   decrease with increasing  at the same rate as   — in accordance with the law
of isothermal atmospheres [Eq. (3)].17,18

III. IMPLICATIONS PERTINENT TO THE SECOND LAW OF THERMODYNAMICS

Now the uppermost question pertinent to the Second Law of Thermodynamics: Will the particle
spontaneously circulate, manifesting spontaneous momentum flow27 — flow that is both (i) sustain-
ing and (ii) robust, i.e., capable of surviving disturbances and of restoring itself if it is destroyed27

— either ascending in Segment , descending in Segment , and completing the circuit by return-
ing to the bottom of Segment  via Segment  — or in the opposite (counterclockwise) direction?
It doesn’t seem so. Even though   increases with increasing  as per Eqs. (4), (5), (7), and
(8) — supradegeneracy!1–6 — and   decreases with increasing  in accordance with the law
of isothermal atmospheres [Eq. (3)] as per Eqs. (3), (6), and (9).17,18 And even though because
the entire tube is of constant internal diameter, we avoid the impediments to cyclical motion of
the particle owing to employing as Segment  a birch trumpet16, i.e., a cone flaring upwards such
that its horizontal cross-sectional area   increases with increasing  as    : see,
in Ref. 4, the paragraph immediately following that containing Figure 4, and Note 3. And even
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Figure 1: Illustration of the tube
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(8) — supradegeneracy!1–6 — and   decreases with increasing  in accordance with the law
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the entire tube is of constant internal diameter, we avoid the impediments to cyclical motion of
the particle owing to employing as Segment  a birch trumpet16, i.e., a cone flaring upwards such
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its join with the top of Segment 2, at altitude zmax. Alterna-
tively, we can construe a short horizontal tube segment, 
Segment H (zmax), connecting the tops of Segments 1 and 
2 at altitude zmax.] Hence the particle’s motion anywhere 
within our closed tube would be random Brownian motion: 
It would not spontaneously circulate: either ascending in 
Segment 1, descending in Segment 2, and completing the 
(clockwise) circuit by returning to the bottom of Segment 
1 via Segment 0—or in the opposite (counterclockwise) di-
rection. It would not manifest the spontaneous momentum 
flow (Zhang & Zhang, 1992) that would be required to chal-
lenge the Second Law.

It doesn’t seem to matter whether there is only one 
particle in our tube—a one-particle isothermal atmo-
sphere—or an isothermal atmosphere comprising two, 
three, or many particles. As per Equations (4) and (11), the 
smoothed-out long-time-average density of one particle as 
a function of altitude z in our tube corresponds to thermo-
dynamic equilibrium (Reif, 2009, sections 2.3 and 6.1–6.4, 
in section 6.3 see especially the subsection entitled “Mol-
ecule in an ideal gas in the presence of gravity,”, section 6.2 
especially p. 205; Schroeder, 2000, problem 1.16; Kauz-
mann, 2000; Wark & Richards, 1999, p. 11 and section 6-3-
5) and hence also to hydrostatic equilibrium (Reif, 2009, 
section 6.2; Kauzman, 1967; Schroeder 2000, problem 1.16; 
Wark & Richards, 1999, section 1-5-4; Wallace & Hobbs, 
2006, section 3.2; Holton & Hakim, 2013, section 1.4.1). 

Thus also the density of an isothermal atmosphere 
comprising two, three, or many such particles as a function 
of altitude z in our tube would correspond to thermody-
namic equilibrium (Reif, 2009, sections 2.3 and 6.1–6.4, in 
section 6.3 see especially the subsection “Molecule in an 
ideal gas in the presence of gravity”, section 6.2 especially 
p. 205; Schroeder, 2000, problem 1.16; Kauzmann, 2000; 
Wark & Richards, p. 11 and section 6-3-5) and hence also to 
hydrostatic equilibrium (Reif, 2009, section 6.2 especially 
p. 205; Kauzmann, 2000; Schroeder, 2000, problem 1.16; 
Wark & Richards, 1999, section 1-5-4; Wallace & Hobbs, 
2006; Holton & Hakim, 2013). 

Thus also the density of any isothermal fluid (gas or 
liquid) as a function of altitude z in our tube would cor-
respond to thermodynamic equilibrium and hence also to 
hydrostatic equilibrium). If there is only one particle in our 
tube, thermalization occurs via collisions with the inner 
wall of the tube; if there are n > 1, via interparticle collisions 
as well as via collisions with the inner walls of the tube (in-
terparticle collisions becoming more important with in-
creasing n)—but this seems to make no difference. That is 
why spontaneous momentum flow (Zhang & Zhang, 1992) 
cannot be manifested, irrespective of the nature or density 
of the fluid (gas or liquid) in our tube. (We re-emphasize 
that thermodynamic equilibrium necessarily implies hy-

drostatic equilibrium but not necessarily vice versa).
Thus, at least in our system, supradegeneracy appar-

ently does not challenge the Second Law of Thermody-
namics—despite both R1 and R2 also being fulfilled. But it 
seems to be an open question whether or not this negative 
result is similarly true for all systems manifesting supra-
degeneracy, especially given that analyses, including com-
puter simulations but to the best knowledge of the author 
at the time of this writing not yet experimental tests, of 
other supradegenerate systems at least prima facie seem 
to yield positive results (Sheehan & Schulman, 2019; Shee-
han, 2019, 2020a, 2020b, 2001–2022, 2018–2022). The 
crucial question seems to be: What is the minimal complete 
set of additional requirements R* (tentatively conjectured 
to include R1 and R2)—over and above supradegeneracy 
per se—that must be fulfilled by a supradegenerate system 
if it is to challenge the Second Law?

But even if our negative result does turn out to be simi-
larly true for all systems manifesting supradegeneracy, 
such systems could still be useful even within the strictures 
of the Second Law (Sheehan & Schulman, 2019; Sheehan, 
2019, 2020a, 2020b, 2001–2022, 2018–2022).

It is important to note that the negative result for the 
system that we consider does not depend on whether or 
not zmax, the altitude at the top of our system at the join 
of Segments 1 and 2, is high enough for suprathermal-
ity (Sheehan & Schulman, 2019; Sheehan, 2019, 2020a, 
2020b, 2001–2002,  2018–2002), i.e., for Emax = mgzmax » 
kT to obtain. That PL (z) is constant within any horizontal 
tube segment, Segment H (z), at any altitude z and equal 
to Pl,L (z) = P2,L (z) at this altitude z—implies only random 
Brownian motion. And this implication is independent of 
the value of zmax and hence of Emax = mgzmax. Indeed, even if 
our particle could spontaneously circulate (Zhang & Zhang 
1992) in challenge to the Second Law—according to our re-
sults it cannot—this too would have been independent of 
the value of zmax and hence of Emax = mgzmax. [But if we wish 
for suprathermality to be obtained without requiring an 
inconveniently large zmax in Earth’s gravitational field, see 
Sheehan (2020b, note 3), our particle should be massive, 
e.g., a Brownian particle rather than an atom or molecule 
of gas. If the Brownian particle is suspended in a fluid, then 
m should be construed as its net mass after subtracting the 
buoyant force provided by the fluid. The mass of a Brown-
ian particle, or even its net mass if it is suspended in a flu-
id, can easily be large enough to avoid an inconveniently 
large zmax in Earth’s gravitational field.] Thus the operation 
of supradegenerate systems in general, and in particular 
whether any such systems turn out to challenge the Sec-
ond Law or all such systems operate within the strictures 
of the Second Law, does not in principle depend on whether 
or not suprathermality obtains—even if in practice supra-
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thermality facilitates more efficient operation, whether 
in challenge to the Second Law or within its strictures 
(Sheehan & Schulman 2019; Sheehan 2019, 2020a, 2020b, 
2001–2022, 2018–2022).

IV. ANTI-SUPRADEGENERACY

To recapitulate, we dub as anti-supradegeneracy G(E) 
decreasing with increasing E and hence P(E) decreas-
ing with increasing E faster than the Boltzmann factor 
e–E/kT. And we dub as strong anti-supradegeneracy G(E) 
decreasing with increasing E faster than the Boltzmann 
factor e–E/kT and hence P(E) decreasing with increasing E 
faster than the Boltzmann factor e–E/kT squared, i.e., faster 
than e–2E/kT. In our system E = mgz so we can, equivalently, 
employ G(z) andP (z) = e–mgz/kT.

Consider the system shown in Figure 1 inverted, i.e., 
upside down. In the inverted Segment 1, G(z) not merely 
decreases with increasing z but does so faster than the 
Boltzmann factor e–mgz/kT, and hence Pl,z(z) decreases with 
increasing z not merely faster than the Boltzmann factor 
e–mgz/kT but faster than the Boltzmann factor e–mgz/kT squared, 
i.e., faster than e–2mgz/kT: not merely anti-supradegeneracy 
but strong anti-supradegeneracy. Or consider a tube com-
prising an upright Segment 1 as shown in Figure 1 and an 
inverted Segment 1. Then both (i) Pl,z(z) increases with in-
creasing z in the upright Segment 1: supradegeneracy! and 
(ii) Pl,z(z) decreases with increasing z faster than e–2mgz/kT in 
the inverted Segment 1: strong anti-supradegeneracy! Yet 
exploiting either supradegeneracy or anti-supradegeneracy 
(even as in our system strong anti-supradegeneracy)—or 
even exploiting both supradegeneracy and anti-suprade-
generacy (even as in our system strong anti-supradegen-
eracy)—does not seem to contravene compliance with the 
Second Law. Because, still, irrespective of Pl,z(z), whether 
employing an upright Segment 1, an inverted Segment 1, or 
even both an upright Segment 1 and an inverted Segment 
1, Pl,L(z)—not Pl,z(z)—is the driver. And Pl,L(z) still—in all cas-
es—decreases with increasing z exactly as the Boltzmann 
factor e–mgz/kT as per the law of atmospheres [Equation (4)] 
(Reif, 2009,  sections 2.3 and 6.1–6.4, section 6.3, espe-
cially the subsection “Molecule in an ideal gas in the pres-
ence of gravity”; Schroeder, 2000, section 1.2, especially 
problem 1.16, problem 3.37, chapter 6, especially sections 
6.1 and 6.2 and problem 6.14). Thus our result of Section 
III—that our particle would execute only random Brownian 
motion—not (either clockwise or counterclockwise) spon-
taneous momentum flow (Zhang & Zhang, 1992)—remains 
unchanged.

We note that the concepts of supradegeneracy and 
anti-supradegeneracy (albeit without being dubbed with 
these names) have been considered previously (Denur, 

2012). It was shown that the average fluctuating energy ⟨E⟩ 
above the ground state of a single particle confined to a 
single classical degree of freedom in thermodynamic equi-
librium with a heat reservoir at temperature T can be much 
larger or much smaller than kT (Denur, 2012). But the larger 
⟨E⟩ is, the more spatially delocalized the particle must be 
(Denur, 2012), and thus the greater the thermodynamic 
cost of overcoming its delocalization (Denur, 2012). Hence 
these previous considerations (Denur, 2012) were compli-
ant with the Second Law (Denur, 2012).

V. SIMPLE EXPERIMENTAL 
TESTS OF OUR SYSTEM

It would be easy enough to bend a piece of transparent 
glass or plastic tubing into the shape described in the first 
four paragraphs of Section II and shown in Figure 1. And it 
would be equally easy to invert it—or to bend a piece of 
transparent glass or plastic tubing into an upright-plus-in-
verted Segment 1—as described in Section IV. An isother-
mal atmosphere consisting of a single Brownian particle, 
or of any number n of them, could be placed in the tube. 
Both isothermality (and hence thermodynamic equilibri-
um) and observability of the Brownian particle(s) could be 
ensured by uniform illumination of the entire tube. It would 
then be a simple matter to observe whether (a) the Brown-
ian particle(s) spontaneously circulate (either clockwise 
or counterclockwise) (Zhang & Zhang, 1992), manifest-
ing spontaneous momentum flow (Zhang & Zhang 1992), 
which is not compliant with the Second Law, or (b) whether 
they manifest only random Brownian motion, which is. I 
hope for (a), but probably in vain: realistically, we expect 
the result to be (b). Probably, but as of this writing not cer-
tainly, in vain: Only experiments can decide the issue for 
sure! Experiments are the final arbiter!

VI. CONCLUDING REMARKS: IMPLICATIONS 
IF THE SECOND LAW IS VIOLATED

As has been stated by Sheehan (2018, 2020b, 2022), if 
the Second Law of Thermodynamics could be violated—by 
any means whatsoever [supradegeneracy, anti-supradegen-
eracy (whether strong or not), and/or otherwise]—the im-
plications would be revolutionary (Sheehan, 2018, 2020b, 
2022)—indeed, more than revolutionary (Sheehan, 2018, 
2020b, 2022).

All current energy sources and technologies—not 
only nonrenewable ones but also renewable ones (except 
photosynthesis)—could be rendered obsolete overnight 
(Sheehan, 2018, 2020b, 2022). Even so-called “renewable” 
current energy sources require continual free-energy (ex-
ergy) input paid for by the temperature difference between 
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the hot solar photosphere and the cold depths of space. 
Also, even so-called “renewable” current energy sources, 
both directly via sunlight and indirectly via wind, rivers, 
ocean currents, waves, ocean thermal energy conversion 
(with a few exceptions, e.g., OTEC3) require expensive stor-
age systems (Sheehan 2018, 2020b, 2022). Moreover, even 
so-called “renewable” current energy sources (including 
OTEC3) have environmental impacts, including the en-
vironmental impacts pertaining to disposal of worn-out 
materials and equipment: Reversing the degradation of 
worn-out materials and equipment may be entropically 
impracticable. By contrast, Second-Law violators require 
zero input, because the same heat can be recycled, used over 
and over again, forever—with no storage systems required 
(Sheehan, 2018, 2020b, 2022). With rare exceptions such 
as the launching of spacecraft and construction (e.g., of 
buildings, bridges, etc.), work is frictionally degraded to 
heat on short timescales, indeed, most usually, continually. 
If the Second Law is violated, wherever and whenever work 
is frictionally degraded to heat, the same heat can be recy-
cled back to work, used over and over again, forever—with no 
storage systems required. A fixed, finite quantity of heat can 
thus do an infinite amount of work! Some of this work could 
be employed to reverse the degradation of worn-out ma-
terials and equipment—hence no disposal required either 
(Sheehan, 2018, 2020b, 2022). And it has been stated that 
systems violating the Second Law are approaching com-
mercialization (Sheehan, 2018, 2020b, 2022).

But, that being said, we should also note that: “If the 
second law should be shown to be violable, it would none-
theless remain valid for the vast majority of natural and 
technological processes” (Cápek & Sheehan, 2005).
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NOTES
1	 Strictly, relativistic gravitational equilibrium vertical 
temperature gradients should be accounted for: See 
Garrod (1995, exercises 7.29 and 7.30) and Tolman (1987). 
At thermodynamic equilibrium, temperature increases 
downwards in any gravitational field. But these vertical 
temperature gradients are utterly negligible for the sys-
tem that we discuss and for all systems discussed in the 
cited references. Moreover, the gravitational redshift re-
duces the temperature of heat radiated from a hot reser-
voir at a lower altitude to the temperature of a cold res-
ervoir at a higher altitude by the time this heat reaches 
the higher altitude of the cold reservoir. Thus what the 
gravitational temperature gradient giveth, the gravita-
tional redshift taketh away. So the Carnot efficiency is 
zero. Hence relativistic gravitational equilibrium vertical 
temperature gradients can-not be exploited to challenge 
the Second Law of Thermodynamics.

2	 Birch trumpet. https://en.wikipedia.org/wiki/Birch_
trumpet 

3	 Ocean thermal energy conversion. https://en.wikipedia.
org/wiki/Ocean_thermal_energy_conversion
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