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Abstract—Mean values of the z-scores of statistical psi effects in psychokine-
sis (PK) and extrasensory perception (ESP) are compiled. Under the infl uence 
of psi, the z-score distribution of experiments with binary random number 
generators (RNGs) at large numbers N of bits is known to be shifted and wid-
ened, but to remain indifferent to N. The mean z-score of binary one-trial 
experiments with dream psi is noted to be not much smaller than the mean 
z-score of these (presumably) mostly isolated many-trial experiments with 
RNGs. This could suggest that with two equivalent choices PK and ESP are 
equally effective, or very nearly so, and the mean z-scores are almost equal at 
all N down to N = 1. The widening is found to be attributable to a Gaussian 
distribution of the magnitude of the PK effect that causes the shift, provided 
the z-score distribution remains Gaussian. Formulas are proposed to compute 
from the values of shift and widening as observed with RNGs those of psi 
effects with more than two equivalent choices, such as falling dice. They are 
only partially confi rmed by the (still rather scanty) datasets of such systems. 
Finally, psi-induced switching and mind-neuron interaction are revisited.

Keywords: statistical parapsychology—mean values—relationships between 
mean values—psi effects—psychokinesis (PK)—extrasensory 
perception (ESP)—random number generators (RNGs)

Introduction

Parapsychological effects are notoriously unreliable. In statistical studies 
of psychokinesis (PK), extrasensory perception (ESP), and mixed psi effects 
the infl uence on a single random event is necessarily insignifi cant, being in 
the range of statistical scatter. The statistical proof of a psi effect requires large 
numbers of individual trials, such as bits, falling dice, or guesses. In some 
cases, an overall chance probability of a psi effect is calculated directly from 
the data of all existing trials. In other cases, it is preferable or even necessary 
to begin with analyzing sequences of trials measured on various occasions. A 
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whole sequence is often referred to as an experiment. The number of trials in 
a sequence may vary from twenty up into the millions. In a meta-analysis, the 
chance probabilities of the sequences are suitably combined to obtain another 
overall chance probability. The values of the total chance probability may 
differ, depending on the method of calculation, but they tend to become smaller 
and smaller as the number of individual trials or sequences of trials increases. 
Accordingly, the psi effect becomes more and more credible. Baffl ing failures 
and irregularities have occurred in such studies and seem to be typical of psi, 
but they do not invalidate the overall statistical proofs of existence. 

While there are several psi effects whose reality appears to be beyond 
reasonable doubt, it is not so clear whether some of their properties such as the 
hit rate in one-trial experiments or the z-score (to be defi ned immediately) of 
many-trial experiments have reliable averages. Also, it is not known whether 
these averages, like quantities in statistical thermodynamics, are related by 
laws or at least obey rules. Mean values of some psi effects have already been 
reported, often with fairly small errors. Although their stability in future studies 
is uncertain, it seems worthwhile to compile them and to look for mathematical 
relationships between them. This is the purpose of the present article. It is a 
delicate endeavor because it would probably be a mistake to regard psi effects 
as a new branch of physics. Psi seems to depend largely on psychological 
factors, among them talent and mood of the test person or subject, and many 
other hardly tangible conditions. A brief description of statistical evaluation 
techniques and an overview of established, statistically evaluated psi effects 
serve as background and precede the search for relationships.

Outline of Statistical Methods

In the following survey, the statistical studies of psi effects are arranged in 
groups according to the type of data analysis. In all cases the original aim was to 
determine either the excess hit rate above its mean chance expectation (MCE) 
value or the so-called effect size e, i.e. the mean value of the z-score per trial 
or single random event. These two quantities, which are closely related to each 
other, are often thought to be constants characterizing a given psi effect. The 
z-score may be defi ned as the ratio of the deviation of the number of hits from 
its MCE value to the root-mean-square (r.m.s.) deviation of the number of hits 
from MCE. Other designations for the r.m.s. deviation are standard deviation 
and square root of the variance.With a fi xed actual hit rate h, the z-score takes 
the form 

                                     z   =   (h − p)N/[p(1 − p)N]1/2                                     (1)                                
                     
Here N is the number of trials executed, either in all studies of a psi effect or in 
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the experiment considered, depending on the type of evaluation, h is the actual 
hit rate, and p is the MCE hit rate, i.e. the probability of a hit in the absence of 
psi. The effect size e or z-score per trial is defi ned by the relationship

                                                     e  z/N,                                                                 (2)

In combination, Equations (1) and (2) yield for the effect size as a function of 
h and p 

                                               e  (h − p)/p(1 − p)1/2.                                                     (3)

On the assumption that they are basically constant, the quantities h − p and, 
thus, e can be computed directly for any large N from the experimental data. 
The computed values are expected to have their standard errors. The standard 
error presupposes MCE and is identical with the root-mean-square (r.m.s.) 
deviation divided by N. The defi nition of z is such that its standard error is 
unity. Although the r.m.s. deviation of z in many-trial experiments has been 
found to increase under the infl uence of psi (see below), it is common practice 
to equate the standard error of the effect size with its MCE value which because 
of Equation (2) is 1/N. Because of Equation (3), the standard error of h − p 
or h then becomes [p(1 − p)]1/2/N. (The formula for the empirical standard 
deviation, which refers to the empirical mean value, substitutes 1/(N − 1) 
for 1/N. The difference can be ignored at large enough N.) If the effect size 
differs among many-trial experiments, an overall mean value is obtained by 
weighted averaging. Evidently, if the effect size is much smaller than 1, a large 
number of trials is required to make the standard error smaller than the value 
to be determined. 

If it turns out that h − p and e are not constant but depend on N, one may 
have to give up the hypothesis of constant effect size. In fact, the mean z-score 
rather than the effect size appears to be independent of N in a certain class of 
many-trial PK experiments with binary random number generators. A meta-
analysis of a multitude of experimental results has been performed in this case. 
It makes use of the psi-induced shift and widening of the Gaussian z-score 
distribution that have been observed in these experiments. The mean z-score 
of an experiment as represented by the shift can be used to calculate an overall 
z-score. Details of the meta-analysis, especially possible implications for effect 
size and hit rate, will be discussed below.

The chance probability of a particular psi effect is, as a rule, derived from 
its overall z-score. The chance probability P(z) of fi nding a z-score at or above 
the argument z is a well-known and tabulated function. In general, a z-score is 
regarded as signifi cant when z ≥ 1.96 with P(1.96)  2.5%. Sometimes, the limit 
of signifi cance is set at z  1.645 with P(1.645)  5%.
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Experimental Background

Psi Eff ects Studied in One-Trial Experiments 

Let me refer to a book by Radin (2006) for graphic examples of cumulative 
averaging of the hit rate of some psi effects. A cumulative (or up-to-date) 
average hit rate covers all studies up to the time when it is calculated. (The 
attribute “average” will occasionally be omitted, because the hit rate is an 
average by defi nition.) In his Figure 6-1, Radin plots the cumulative mean hit 
rate of dream psi experiments over the year of averaging. He takes most of 
the data from a review by Sherwood and Roe (2003) dealing with 47 studies. 
In the dream psi tests, which began in 1966, the subject intends to dream of 
the contents of a picture selected at random from a given pool of ten. In the 
early studies, the picture was “sent” by another person during dream (or REM) 
sleep phases of the subject who was woken up after dreaming to record their 
impressions. Later on, in a simplifi ed mode, the pictures were displayed in an 
empty room on a computer monitor while the subject slept, and the subject 
recorded their dreams from memory in the morning. The next day the pictures 
in the pool were ranked according to the estimated probability of being the 
correct one. A hit was registered when the sent picture was in the fi rst half of the 
ranking. There seems to be no signifi cant difference in the results between the 
two modes. The fi nal cumulative mean, or overall, hit rate of all 1,270 trials was 
59.1%, where 50% is expected by chance. The fl uctuations of the early values 
of the cumulative average hit rate are large (varying between 52% and 65%), 
which is a consequence of the small numbers of trials involved. When the initial 
fl uctuations had ceased, the cumulative average hit rate fl uctuated within the 
range of (59.1  1)%, and there was no apparent drift.  

In his Figure 6-6, Radin (2006) gives a similar graph for ganzfeld psi tests. 
Here a waking subject in the ganzfeld state is to “receive” a picture or the 
essence of a video clip. The object is randomly selected from a pool of four 
and “sent” by another person or only displayed on a computer monitor. After 
88 ganzfeld studies with altogether 3,145 trials, performed from 1974 through 
2004, the overall hit rate was 32%, while 25% was expected by chance. In 
addition to the strong initial fl uctuations, the cumulative mean hit rate displays, 
except for the last ten years, a small downward drift starting from 35%. The 
time taken by a ganzfeld trial seems to have been one or two hours.                

Finally, based on studies by Sheldrake (2003), Radin (2004), and others, 
Radin (2006) in his Figure 6-10 plots cumulative mean hit rates of experiments 
on the sense of being stared at. Here the subject is to guess after a signal whether 
or not he or she is being stared at by another person. In 60 different studies, 
with altogether 33,357 trials, the overall hit rate was 54.5% where chance 
expectation was 50%. Apart from the typically strong early fl uctuations, there 
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is a slow fl uctuation of the cumulative average in the range of 54.5  0.5%. The 
interval between trials with staring periods of usually 10s seems to have been 
on the order of minutes.

Using the direct method, Radin (2006) calculated the overall chance 
probability P for the datasets of each of the three psi effects. The probability 
was derived from the fi nal cumulative, or overall z-score, which is obtained 
from the total number of trials and the overall hit rate by means of Equation 
(1). The overall z-scores were zoverall  6.49, 9.07, and 16.44 for the dream psi 
experiments, the ganzfeld studies, and the tests of the sense of being stared at. 
Though not quoted by Radin, they are explicitly written down here because 
they will be needed in the following for a comparison of effect sizes. The 
chance probabilities P(z) associated with zoverall are P » 1010, 1019, and 1059, 
respectively. The standard errors of the cumulative mean excess hit rates h − p 
shown in Radin’s plots, i.e. the r.m.s. deviations of the excess numbers of hits 
divided by N, are on the order of 10%. 

In all three types of studies, the psi effect per trial as expressed by the 
extra hit rate h − p in excess of its MCE value seems rather stable after a 
suffi cient number of trials. This is surprising because different laboratories and 
many different test persons took part in the experiments. There is of course no 
guarantee that the cumulative mean values will remain unchanged when new 
experiments are conducted in the future. For instance, admitting only subjects 
of proven talent or modifying some experimental details may in the long run 
have dramatic consequences.    

Psi Eff ects Studied in Many-Trial Experiments of Fixed Length

A psi experiment with an MCE hit rate p  0.2 is card guessing with ESP 
cards. These come in decks of 25 cards bearing one of the fi ve symbols: circle, 
square, cross, star, or wavy lines. Since their invention in 1934, a large number 
of trials have been accumulated, ranging up to a million and more as a function 
of the experimental quality demanded for inclusion. Steinkamp (2005) recently 
gave a survey of reviews of the numerous studies, beginning with an attempt to 
determine the effect size per trial, e, as defi ned by Equation (2). Most probably, 
evaluations of e were based on 25 consecutive trials or multiples thereof. 
The overall result varied with experimental quality and other factors, ranging 
roughly from e  0.05 to 0.02. Steinkamp also dealt with the dependence of the 
psi effect on psychological and physical conditions. It seems impossible in the 
case of ESP cards to defi ne a more accurate mean value of the effect size.  

Another psi effect with an MCE hit rate of 20% is studied in the ball 
drawing test. It was introduced and investigated by Ertel (2005) whose report 
was reviewed and supplemented with some unpublished data by Broderick 
(2007). In 231 experiments, one of 50 table tennis balls marked with 1, 2, 3, 4, 
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or 5 in equal proportion was drawn from an opaque bag with the subject aiming 
for one of the fi ve numbers. After recording the number and returning the ball, 
the bag was shaken to restore random mixing. The number of balls drawn in 
an experiment was either 240 or 360. The experiments were done in the years 
1998 to 2002, with a different test person in all 231 cases. The total number 
of trials, draws in this study, was 71,760, while that of hits was 15,646, which 
is 9.0% above the mean chance expectation of 14,352. This corresponds to a 
hit rate h  0.218 instead of its MCE value p  0.2. From these numbers and 
Equation (1), the overall z-score was calculated to be zoverall  12.07, which leads 
to P » 10−32. Insertion of h and p into Equation (3) yields the overall effect size 
e  0.045. A remarkable feature of Ertel’s experiments is a conspicuously high 
frequency of near misses, e.g., 2 and 4 when 3 was the targeted and most often 
drawn number.

For a comparison of psi effects, it will be useful to know ázsequñ, i.e. the 
mean value of the z-scores, of the 231 sequences of trials in the ball drawing 
studies. From the overall z-score or the annual values of z, one computes ázsequñ 
 0.79 or 0.80, respectively. In both cases, Stouffer’s formula

                                       zStouffer    ázsequñ 1/2,                                                  (4)

is used inversely to compute ázsequñ from zStouffer. The quantity substituting here 
for zStouffer is the overall z-score or its annual value, respectively, while  is the 
number of experiments involved. Actually, zStouffer as defi ned by Equation (4) 
is the mean overall z-score, if every zsequ obeys the same Gaussian distribution 
regardless of N. This fact may help one to understand Equation (2) defi ning the 
z-score per trial. In the present computation, as in others, zStouffer is replaced by 
or interpreted as zoverall with hardly any loss in accuracy whenever zsequ satisfi es 
the condition just mentioned and  is very large. 

Psi Eff ects Studied in Many-Trial Experiments of Variable Length

The PK studies of mind–matter interaction using binary random number 
generators (RNGs) or the fall of dice involve more than a billion bits (Radin 
& Nelson, 1989, 2000) and more than 2.5 million fallen dice (Radin & Ferrari, 
1991). The experiments began in 1935 and 1959, respectively, after the invention 
of suitable machines. The abundance of trials is due to automatization which 
permitted the number N of bits or throws in an experiment to be varied over 
many orders of magnitude. The subjects intended to produce either a positive or 
a negative deviation of the number of hits from its MCE value. Again, the stated 
goal of these studies and their meta-analyses was to determine the effect size e, 
i.e. the PK effect per bit or fallen die. This quantity was thought not to depend 
on the number of trials in an experiment and thus to characterize the psi effect. 



Stable Mean Values in Statistical Parapsychology 13

Interestingly, among numerous graphs the authors diplayed the distributions 
of psi-infl uenced z-scores. The number N of bits or fallen dice does not enter 
into these representations. Any MCE statistical distribution of hits is essentially 
Gaussian, if the hit rate is not too near either of its limits, zero, or unity, and 
if N is large enough. This was the case in all the experiments underlying the 
meta-analyses. In plotting the graphs, negative intentions (i.e. those aiming 
for fewer than the normal number of hits) were reinterpreted as positive 
intentions by changing the sign of the associated z-scores. The resulting plots 
were approximated by modifi ed Gaussian distributions that were shifted in 
the direction of positive z. In addition, they were widened in comparison with 
the normal distribution, although this was not intended in any way. Radin and 
Nelson (2000) and Radin and Ferrari (1991) computed the overall z-score 
of the modifi ed distribution from the z-scores of the experiments by means 
of Stouffer’s formula. From this z-score, they calculated the overall chance 
probability of the dataset. A more complete treatment takes into account both 
the shift and the widening factor of the Gaussian distribution under the infl uence 
of psi (Helfrich, 2007). It results in a much smaller value of the overall chance 
probability. The treatment will be revisited below in the search for a relationship 
between shift and widening.

It is remarkable that Gaussian z-score distributions could be used, at 
least as plausible approximations, to describe the effect of psi, even though N 
varied by several orders of magnitude among the experiments. Their apparent 
indifference to N raises the suspicion that the z-scores of PK experiments with 
RNGs and falling dice are independent of the number N of trials in a sequence, 
or, in other words, that psi modifi es the distribution of chance probabilities in 
the same way for all (large enough) N. This would clearly justify equating zStouffer 
to zoverall if  is large. The conjecture that ázsequñ does not depend on the number 
N of random events in a PK experiment had been put forward earlier, mainly 
under two headings: the Intuitive Data Sorting model (IDS) of May, Radin, 
Hubbard, Humphrey, and Utts (1985) and the Decision Augmentation Theory 
(DAT) of May, Utts, and Spottiswoode (1995). These models explain PK in 
terms of precognition, which in the case of RNGs seems possible if the test 
person pushing the button enters a continuous predetermined random sequence 
of bits at an appropriate moment. The model runs into diffi culties in the case 
of dice, where no sequence is entered, and is in confl ict with systematic RNG 
studies of the PEAR (Princeton Engineering Anomalies Research) group (see 
below). Moreover, a random choice of bits brought about by quantum events 
such as nuclear decay, tunneling in diodes, or thermal scattering is incompatible 
with the idea of predetermination. Let me take a neutral position and simply 
assume that psi effects are goal-oriented and probably reach their goal on rather 
direct pathways which remain to be explored.
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Binary RNGs. The original meta-analysis by Radin and Nelson (1989) 
was based on the z-scores of 597 experiments with binary RNGs. The authors 
defi ned as an experiment the largest possible aggregation of bits collected in a 
given report under a single directional intention. Pilot and confi rmatory tests 
were treated as separate experiments. They did not distinguish between pure 
cases and others, probably rare, in which the intentions were intermingled. Also, 
the number of subjects following one another and the number of button pushes 
in an experiment were disregarded. (In this context, it is interesting to note that 
Radin and Nelson (1989) expressed results reported merely to be insignifi cant 
by the MCE z-score distribution but cut off at the limits z  1.645.) The mean 
shift ázsequñ and the widening factor or standard deviation  as read from the 
plotted psi-modifi ed Gaussian z-score distributions are ázsequñ  0.6 and   
1.5. Analytically, the authors derived ázsequñ  0.645 and   1.601 from the 
data points underlying the modifi ed distribution. The effect size was averaged 
over the experiments with a weight proportional to N and found to be about 
(3  0.5)  104, with surprisingly little dependence on experimental quality 
and other factors. Even deleting 17% of the experiments as outliers, to achieve 
homogeneity of the e-values computed from the individual z-scores, did not 
make a marked difference. The Princeton Engineering Anomalies Research 
(PEAR) group, who processed more bits than any other psi laboratory, found 
the effect size to be on the order of e  110−4 (Jahn, Dunne, Nelson, Dobyns, 
& Bradish, 1997, Jahn & Dunne, 2005).

In the updated meta-analysis of Radin and Nelson (2000), the 258 
experiments of the PEAR group were collapsed into a single data point (or 
two), while new ones, 84 reported by 1987 and 92 reported after 1987, were 
added. For this dataset, the practical absence of a correlation between N and 
z of the RNG experiments was expressly stated. (The correlation of N and 
z was given as r  0.015, P  0.36, which is far below the level of statistical 
signifi cance.) It can also be directly recognized from a graph in Schub’s (2006) 
critique of Radin and Nelson (1989, 2000) that displays data points in a (z,logN) 
scatter diagram. Also in the update, the overall z-score was computed with 
Stouffer’s method. The result, z  16.1, corresponds to the chance probability 
P(16.1) » 1058. Particularly valuable for a comparison with other psi effects 
is a plot of the cumulative mean z-score per experiment as a function of the 
year of publication. Its fi nal value for the period of 1959 to 1987 is ázsequñ  
0.71  0.05 at the top of a slight upward fl uctuation following a bottom at 
0.62. The post-1987 data are plotted separately, their overall mean value being 
ázsequñ  0.61  0.12. Their standard error is large because of the relatively small 
number (92) of experiments. Since the RNG mean z-score is a reference point 
in the following, some additional details should be noted. Dividing the data of 
380 selected RNG experiments into quartiles of 90 according to bit number N, 
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Bösch, Steinkamp, and Boller (2006) found ázsequñ to range from 1.05 (smallest 
N, z probably infl ated by some gifted test persons) to 0.41 (largest N, but N  
109 omitted). Their overall mean was ázsequñ  0.67. The value used for RNGs 
in the estimates below is ázsequñ  0.65. The slight dependence of ázsequñ on N 
would seem to be not in serious confl ict with Radin and Nelson’s (2000) fi nding 
that ázsequñ is practically constant. The question of a general constancy of ázñ 
that holds either for sequences or, in other situations, for single trials, will be 
an important topic in the following. The plot of cumulative mean z-scores can 
be regarded as a valid counterpart to the plots of cumulative hit rates of the fi rst 
three psi effects since h − p is easily converted into e, i.e. the mean z-score of a 
one-trial experiment.

It was pointed out above that an indifference of the z-score distribution to N 
implies, for the result of a single PK experiment, an N-independent distribution 
of chance probabilities. Let it be emphasized again that this is in sharp confl ict 
with the more common assumption that the effect size or, equivalently, the psi-
induced part of the hit rate, is independent of N. In the latter case the mean psi-
induced z-score is expected to increase with N, because the average difference 
of psi-affected and MCE hit numbers varies with N, while the standard error 
of the hit numbers is proportional to N. The PEAR group adhered in general 
to the concept of a constant PK effect per bit. Dobyns and Nelson (1998) 
utilized the wealth of data at PEAR to compare this concept to the model of 
constant ázsequñ. In this comparison, a sequence generally consisted of the bits 
between button pushes, the bit number varying from 200 to 200,000. Another 
experimental variable was the number of bits in a 0.2s block (which at PEAR 
was called a trial). Apart from the regular 200-bit blocks, there were blocks of 
20 and 2,000 bits. It turned out that the data agree better with a constant effect 
size than with a constant ázñ per sequence of bits. 

Recently, it was proposed that there may be room for both models, that 
of constant e as well as that of constant ázsequñ (Helfrich, 2007). The constant-
ázsequñ model apparently applies to isolated experiments, i.e. those which in 
motivation, time, and probably other factors are well separated from others of 
the same kind. A constant effect per bit, independent of N, appears to prevail 
whenever a particular experiment is serial or, more aptly, “embedded” in a 
series of similar experiments, which seems to have been the typical situation 
at PEAR. The 515 experiments underlying the updated meta-analysis of Radin 
and Nelson (2000) were, of course, not distinguished with respect to the degree 
of isolation. Confi dence that they were suffi ciently isolated can be based only 
on the Gaussian z-score distribution and the small number of experiments in 
most of the 216 original publications. 

The confl ict between the two models is confusing, and there is a general 
tendency to fall back on the concept of an N-independent effect per bit because 
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this hypothesis appears more physical. Acceptance of an N-independent z-score 
may be made easier by a recent observation of Jahn and Dobyns (2007). They 
pointed out that a ázsequñ can be independent of N not only if the effect size equals 
e(N)  ázsequñ/N for all bits in a sequence of N bits, but also if it equals e(n)  
½ázsequñ/n at any N, with n being the running number of bits. The equivalence 
is a consequence of the identity

                                            (1/2N) 
N

0

(1/n1/2)dn       1/N                                     (5)

Utilizing previous PEAR data, the authors tried to fi nd out which of the two 
variants of the constant-ázsequñ model is the better one, without reaching a 
conclusion. No such check has as yet been made exclusively for isolated 
experiments.

Also at PEAR, Ibison (1998) and later on Dobyns, Dunne, Jahn, and Nelson 
(2004) examined the constancy of the effect size in a dramatic fashion. In 
otherwise unchanged experiments, they increased the bit rate from the regular 
200 per block to 10,000 times as many. A block of random bits was generated, in 
the usual manner, within an interval of 0.2s in every period of 0.9s. Low speed, 
i.e. the usual bit rate, was obtained by taking only one of every 10,000 bits. 
Both studies involved many test persons. In Ibison’s study, 70 series of 1,000 
blocks were recorded with each intention (high, low, baseline). For a given 
intention, high-speed and low-speed sequences alternated at random from block 
to block but were sorted afterward according to speed, thus representing two 
experiments in the evaluation. The focus was on the difference effect, i.e. the 
difference of the z-scores with positive and negative intention divided by 2. 
At low speed, the overall difference z-score was 1.2967. This is insignifi cant, 
but happens to agree very well with what may be expected on the basis of 
Radin and Nelson’s meta-analysis (1989) and rather well with the large body 
of experiments by PEAR that employed 200-bit blocks. In fact, inserting N  
7106 into Equation (2), one obtains from the overall difference z-score divided 
by 2 the effect size e  3.5104. However, this inference is of little weight 
and, in particular, does not prove that the experiments were of the “embedded” 
type, because of the insignifi cance and, correspondingly, large standard error 
of the z-score. At high speed, the difference z-score was −3.7391, which is 
signifi cant (P  1104), but larger than the low-speed result only by a factor 
near three while a factor of 100 may be expected on the basis of Equation (1). In 
other words, the effect size as computed from the overall z-score decreased by 
a factor of roughly 30. Even more surprisingly, the sign of the overall z-score at 
high speed was contrary to intention. Apart from essentially confi rming Ibison’s 
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results in a total of 149 similar experiments, Dobyns et al. did 39 experiments 
solely at high speed, noting no signifi cant difference in effect size from the 
high-speed part of the experiments mixing the speeds. The fi ndings of Ibison 
(1998) and Dobyns et al. (2004) agree with neither the constant-ázsequñ nor the 
constant-e model. However, they suggest that the PK effect per bit tends to be 
suppressed when otherwise the absolute value of the z-score would become “too 
large”. One may wonder whether the two studies, if taken as two times three 
single experiments, could be of the isolated type. In this case mean difference 
z-scores on the order of z  1 would be within the expected range, but mean 
difference z-scores on the order of z  4, as found at high speed, are outside. 
The change in the sign of z cannot be explained by any existing model. These 
studies suffer from large errors because, like many specifi c studies, they involve 
relatively small numbers of experiments.

Falling dice. Radin and Ferrari’s meta-analysis of the PK effect on falling 
dice was based on 148 experiments. They obtained for the effect size e  
0.012  0.006 the large uncertainty arising from a considerable dependence on 
experimental quality and other factors. The mean shift and the widening factor 
as read from the drawn Gaussian distribution of psi-affected z-scores of dice 
experiments are ázsequñ  1.5 and   2.5. The overall z-score was computed 
to be zStouffer  18.2, resulting in a chance probability of 1074. There is no plot 
of the cumulative mean z-score per experiment over time and no check of the 
correlation between z and N in the meta-analysis of the dice experiments.

The PK effect on falling dice has not only been investigated less often and 
mostly prior to the advent of RNGs, it is also more prone to pitfalls than that 
on RNGs. Perhaps the greatest problem is the fact that even without PK the 
hit rates of the six faces of a die usually are not identical. For instance, some 
material is lost if the numbers are marked by small scoops, which favors the six-
face to end up on top. Radin and Ferrari (1991) showed in their Figure 6 that the 
effect of the asymmetry is nearly as large as the PK effect. To avoid mechanical 
effects, one has to admit only balanced experiments in which all six faces are 
equally often the target of intention. This reduces the number of experiments 
underlying the meta-analysis from 148 to 69. With this restricted dataset, Radin 
and Ferrari computed zStouffer  7.617, which correponds to a chance probability 
of 10−14. Reverse use of Stouffer’s formula (4) led from this number to the 
average z-score ázsequñ  0.917 (0.1) of the 69 experiments. The situation may 
be even more complicated because Figure 6 of Radin and Ferrari (1991) also 
seems to show that certain die faces, in particular 6, 2, and 1, are preferred in 
PK studies even after correcting for the effect of mechanical asymmetry.

There is another serious problem with the dice data because, as a rule, 
several dice are thrown at once, the upper limit apparently being 96 (Radin, 
2006). Both Radin and much earlier Rhine (1972) provide data suggesting that 
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the PK effect per die is independent of the number of dice in a throw. Let me 
adopt this independence as an assumption, although it seems unlikely to hold 
for extremely large numbers of dice. Otherwise, a single throw of a suffi cient 
number of dice could generate a mean z-score of any value desired.    

Tentative Conclusions Drawn from Comparing Mean Values of Psi Eff ects

The most important data of the psi studies considered here are compiled in 
Table 1 for convenient comparison. Inspection of the data suggests examination 
of three types of possible relationships between mean values of psi effects. 
First, the mean z-scores of the one-trial ESP experiments are not much smaller 
than the mean z-score of many-trial PK experiments on RNGs. How close is 
this similarity at best and what could it mean? Second, the widening factor  
of the shifted and widened z-score distributions which ideally is identical to its 
standard deviation may be regarded as a mean value. Can a simple explanation 
be put forward for the widening? Is there a relationship between  and ázsequñ, 
i.e. widening and shift, that holds for binary RNGs, falling dice, and, perhaps, 
other PK or ESP effects? Third, the mean shift of the z-scores found with binary 
RNGs is smaller than those found with falling dice and ball drawing. These 
experiments differ by the number of targets that are equivalent in the absence 
of psi or, for short, by their multiplicity m. Can a plausible formula be proposed 
that relates the mean z-score at any m to its particularly trustworthy value at 
m  2? To fi nd such a relationship was the goal of a preliminary publication 
(Helfrich, 2008). It may be diffi cult to achieve, even when more data become 
available, if indeed psi effects with m  2 discriminate between choices that 
without psi are equivalent. Finally, an update complementing an earlier article 
(Helfrich, 2007) is given of psi-induced switching and its possible role in mind–
neuron interaction.                               

A Comparison of One-Trial Experiments in ESP to Many-Trial Experiments in PK

A glance at Table 1 reveals that the mean z-scores per trial, i.e. áztrialñ  
zoverall/N, of the studies of dream psi, ganzfeld psi, and the sense of being 
stared at, are less than an order of magnitude below the mean z-score ázsequñ of 
(presumably) isolated RNG experiments usually consisting of a large number 
of trials. As already mentioned, the number of trials, N, has different meanings 
in the two cases. In the fi rst three studies it is the total number collected in the 
course of years, while in the fourth study N refers to a single experiment. The 
extreme effect sizes of the one-trial experiments may be due to a high degree of 
isolation of the trials. The dream psi experiments seem to be particularly well 
isolated from each other since no more than one picture was “sent” in a night. 
The increase of the hit rate from 50% to 59.1% represents the maximum effect 
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size in Table 1. The ganzfeld experiments with an increase from 25% to 32% 
are almost equally impressive, but more diffi cult to compare as they are of type 
m  4. Here the time taken for sending and receiving a single picture, including 
preparations, seems to have been an hour or two. Experiments testing the sense 
of being stared at, which permit repetition probably in a matter of minutes, 
resulted in another high hit rate, 54.5% instead of normally 50%, but the excess 
above 50% is only half as large as in the dream psi experiments. 

There is still a gap by a factor of 3.6 between ázsequñ  0.65 as found in 
psi experiments with binary RNGs and áztrialñ  0.182 as found in dream psi 
studies. The number of equivalent choices is m  2 in both cases, but one effect 

TABLE 1
Compilation of Data on PK and ESP Experiments

Type of 
Experiment 

Dream Ganzfeld Staring Ball Test ESP Cards Bits Dice, All Dice, 
Balanced

Trials 1270 3145 33357 71760 >2⋅106 >1.4⋅109 >2⋅106 ?

Sequences na na na 231 na 515 148 69

Hit rates 
(in percent)

59.1/50 32/25 54.5/50 21.8/20 nc /20 nc nc nc

 z
overall

6.49 9.07 16.44 12.07 nc   nc nc nc

áz
trial

ñ = e 
isolated

0.182 0.162 0.090 na na na na na

áz
trial

ñ = e 
embedded

na na na 0.045              
in sequ

0.02–
0.05

3⋅10-4 
5⋅10-5

0.0122 
0.0062

0.00861
0.00110

áz
sequ

ñ na na na 0.79 na 0.65, 
(0.41–1.05)

1.5 0.917

 z
Stouff er

na na na na na 16.1 18.2 7.617

Widening 
factor a

na na na ? ? 1.5 2.5 ?

Reference Radin 
(2006)

Radin 
(2006)

Radin 
(2006)

Ertel 
(2005)

Steinkamp 
(2005)

Radin & Nelson 
(1989, 2000)

Radin & Fer-
rari (1991)

Radin & Fer-
rari (1991)

na, not applicable. nc, not calculated. Trials means number of individual random events. Sequences means number of (presumably) 

isolated sequences. Hit rates are overall psi-infl uenced values (above) and MCE values (below). (See also main text.)

z
overall

 is the z-score taken over all one-trial experiments for a given psi eff ect. 

áz
trial

ñ = e is the eff ect size or eff ect per trial, which equals z
overall

/(total number of trials) in the case of isolated trials, but is an

 average of z
sequ

/(number of trials in a sequence), in the case of embedded many-trial experiments. 

áz
sequ

ñ refers to (presumably) isolated many-trial experiments only. The values of áz
sequ

ñ in parentheses are taken from Bösch,                 

Steinkamp, & Boller (2006). 

z
Stouff er

 represents áz
sequ

ñ  (number of presumably isolated sequences). 
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is ascribed to PK and the other to ESP. Let me try to reduce the gap further 
with the following argument based on Equation (5). Replacing the integral in 
this equation by the sum of the discrete values of 1/n−1/2 over all n and keeping 
only the fi rst term (n  1) in an attempt to realistically describe the case 
N  1, leads to ½ instead of 1 on the left-hand side of this equation, while 1 is 
obtained on the unaffected right-hand side. This suggests eN 1   ½ázsequñ, so that 
áztrialñ of the dream psi studies would be expected to be half as large as ázsequñ 
of RNG psi experiments at large bit numbers (N ³ 20) where the difference 
between integral and sum is negligible. The gap thus shrinks to the factor 1.8, 
and the two mean z-scores of dream psi, one actual and the other “theoretically” 
predicted, may be regarded as “practically equal”, considering the uncertainties 
and fl uctuations mentioned elsewhere in the present article. Of course, this idea 
is speculative in more than one respect. For instance, replacing for N  1 the 
integral in Equation (5) by the fi rst term of a sum seems crude, but it might be 
at least a step toward a more accurate treatment. Unlike the mean z-score of 
sequences, that of one-trial experiments is limited by the maximum effect size 
which is e  1 in the case m  2 (see below). The closeness of áztrialñ  0.182 
to that limit might be a further factor explaining its small value. In the tests of 
the sense of being stared at, another binary choice, áztrialñ is half as large as in 
dream psi. This could be due to the much higher frequency of the guesses which 
possibly impairs their isolation. A mean z-score proportional to the square root 
of the time spent for achieving it has been proposed by Nelson (2006) in his 
theory of a time-normalized yield in psi experiments.

If the considerations of the last two paragraphs are correct, three types of 
mean z-scores may have to be distinguished in psi experiments. The fi rst is that 
of a single trial isolated from all other one-trial and many-trial experiments of 
the same kind. The second is the mean z-score of a rapid sequence of (many) 
trials which is isolated from all similar experiments including single trials. 
The third is that of a trial, either single or part of a sequence, embedded in an 
environment of similar experiments.

The fact that after the correction áztrialñ of dream psi experiments and ázsequñ 
of RNG experiments, both of multiplicity m = 2 appear to be equal or nearly so 
suggests two tentative conclusions: First, psi is (almost) equally effective in PK 
and ESP, and, second, the mean z-score of an isolated experiment depends little 
on the number of trials involved all the way down to N  1. The conclusions are 
interdependent, i.e. both of them are either right or wrong. The mean z-score
for m  2 seems to lie in the vicinity of 0.5 in one go or, in psychological 
terms, upon one impulse of motivation. This is when there is no interference 
with “nearby” similar experiments which appears to reduce the psi effect. 
Conversely, one may wonder if several impulses can act in long sequences, 
especially those performed by a series of subjects, thus augmenting the z-score.
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Looking for a Relationship between Psi-Induced Shift and Widening of the 
MCE-Gaussian Distribution

Let it fi rst be shown that the widened Gaussian distribution can be 
understood as the product of two Gaussian distributions. The normalized 
versions are being used whose integrals are unity. One of them is the MCE 
distribution without PK infl uence,                                         

                                                  (2)−1/2exp(−z2/2).                                                    (6) 

(For convenience, the subcript of zsequ is dropped here and in some of the 
following formulas.) The other is due to a newly introduced scatter of the PK 
effect per bit or falling die,

                                      (2)−1/2 sPK
−1 exp−(2/2sPK

2),                                       (7)

where sPK is the standard deviation of the PK effect which, like , is measured 
in units of z. (The mean shift of z can be ignored in these considerations.) 
Integrating the normalized product function (4πsPK) −1 exp−(z  )2/2 − 2/
(2sPK

2) over  for a given z leads to a widened Gaussian distribution as a 
function of z

                              2(1  sPK
2) −1/2 exp−z2/2(1 + sPK

2).                               (8)                                                     

It follows from the fi nal form that the widening factor  of the Gaussian 
distribution modifi ed by psi obeys the relationship

 
                                               2 =  1 + sPK

2.                                                       (9)

Therefore, the widening can be interpreted as the consequence of a Gaussian 
scattering of the PK effect. To avoid averaging back to the mean effect size 
(zero in the present example), the fl uctuations of the effect size must be slow 
as compared to the duration of an experiment. For binary RNGs, a different 
model was proposed by Pallikari (2004, 2008) who attributes the widening to a 
tendency of equal bits to agglutinate in the presence of psi. However, at least in 
the PEAR data no such effect was noted (Nelson, 2008).          

Inspecting the z-score distributions of the PK effects on binary RNGs and 
dice immediately shows that the increase in width, − 1, roughly equals the 
mean shift ázsequñ in both cases. As a proportionality of these two quantities 
seems mathematically unsound, it is preferable to use the equally simple 
equation   

                                               sPK =   ázsequñ  ,                                              (10)                                                          
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assumed to hold for RNGs and dice and, it is hoped, any number of equivalent 
choices. This “geometrical” model gives  = 1.72 when the values for binary 
RNGs, ázsequñ  0.65 and   1.5, are inserted into Equations (9) and (10) and 
sPK is eliminated between these equations. If proportionality applies, the same 
value of  should be obtained with dice. Inserting   2.5 and ázsequñ  1.5, the 
value found in the meta-analysis of all 148 dice experiments, results in   1.53. 
Using instead the mean z-score of the 69 balanced experiments, ázsequñ  0.917, 
yields   2.50. Both values of  for dice differ from that for RNGs, one being 
smaller and the other larger, but with ázsequñ  1.5 agreement is clearly better 
than with ázsequñ  0.917.

An alternative model may start from the formula for the mean chance 
probability of a single experiment, i.e. for the factor  by which the overall value 
of P2, another kind of chance probability, is reduced on average by an additional 
experiment under the infl uence of psi (Helfrich, 2007). Taking account of the 
fact that the number of possible z-scores per standard deviation is proportional 
to , one has for the shifted and widened distribution the reduction factor

                                           exp[− (áz2ñ − 1)/2] ,                                 (11)                                       

while the total chance probability for the result of  experiments is P2  .  Use 
of áz2ñ  2  ázñ2, which follows from integrating over z the product of z2 

and the normalized Gaussian distribution function of Equation (6), transforms 
Equation (11) into

                                      expln − (2 − 1  ázñ2)/2                                 (12)

Incidentally, the exponent of the exponential function can be interpreted as 
minus the free energy which it costs to move a single particle from the MCE to 
the modifi ed Gaussian distribution. As in the exponent of a Boltzmann factor, 
the energy is understood to be divided by (or given in units of) kT, where k is 
Boltzmann’s constant and T absolute temperature. The potential is entropic, 
refl ecting the number of ways in which a particular z-score can be attained. 
Accordingly, the internal energy of the hypothetical one-particle ideal gas is 
purely kinetic. It can be ignored, being conserved under shift and widening. 

The digression into physics is not needed to realize that the exponent in 
Equation (12) may be split into the terms ln − (2 − 1)/2 and −ázñ2/2. This 
allows separating the contributions of shift and widening to the reduction factor 
 of the modifi ed Gaussian distribution. For RNGs with   1.5 and ázñ  0.65 
the terms are −0.22 and −0.21, respectively. Therefore, in the case of RNGs the 
reduction factor due to widening practically equals the reduction factor due to 
shift, although widening was not intended in the experiments. A model relating 
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mean shift and widening may now be based on the expectation that this equality 
applies as well to PK effects of other multiplicities. For falling dice with   
2.5 and ázñ  1.5 (or 0.917) the two terms in the exponent of Equation (12) 
are −1.71 and −1.125 (or −0.42), respectively. Evidently, for both values of 
ázñ the “free energy” of widening is distinctly larger than that of shifting. The 
discrepancy is smaller with ázñ  1.5 than with ázñ  0.917. On the whole, it 
seems that the geometrical model is the more attractive one and that the larger 
mean shift is the “better” result, despite the fact that it includes unbalanced 
studies. However, the dice data are not suffi cient in number and quality to rely 
on them. As yet, it is not possible to decide which of the two models proposed 
is the correct one or if both of them fail. 

The detailed data of Ertel’s (2005) experiments, as yet unpublished, should 
reveal whether widening also occurs in the ball drawing test. Interestingly, 
the Global Consciousness Project initiated by Nelson et al. (1996) uses the 
widening of the z-score distributions in a network of binary RNGs to monitor 
events that arouse worldwide emotion.

Looking for a Dependence of the Mean z-Score on the Number of Equivalent 
Choices

The question of a possible dependence of ázñ on the multiplicity m will be 
discussed largely in terms of many-trial experiments, but the results can always 
be transferred to one-trial experiments by putting N = 1. The simplest and 
most extensively studied psi effect is the electronic version of coin throwing 
carried out with binary RNGs. Also, psi effects of m  2 seem to be immune to 
the psychological perturbations which apparently plague psi effects of higher 
multiplicities. Therefore, they are a suitable reference point in dealing with 
psi effects of m > 2. The foremost question is whether the mean z-score per 
isolated one- or many-trial experiment varies with the number m of choices 
that are equivalent without psi. To begin with, let me propose two different 
mathematically straightforward models. The fi rst one is based on the trivial 
assumption that ázñ is independent of m. If the problem of widening is left 
aside, the model means in physical terms that the free energy of shifting the 
Gaussian distribution of z-scores is the same for all m. This “constant-ázñ” 
model seems to fail when applied to the fall of dice with m  6 and the ball 
test with m  5. In both cases, the mean z-scores per experiment are larger than 
those of binary RNGs. However, the difference is small for m  5 where ázsequñ 
is 0.79 instead of 0.65. A direct confi rmation of the constant-ázñ model in the 
case of one-trial experiments could be the near equality of the effect sizes in the 
dream and ganzfeld psi studies where m  2 and 4, respectively.

The second model may be called the “generalized binary model.” It is 
based on the idea that the MCE frequency of misses is reduced by a psi-induced 



24 Wolfgang Helfrich

partial conversion of a miss into a hit. The effi ciency of conversion is assumed 
to be equal for all misses and not to depend on multiplicity. This is an extension 
of the binary model to every pair of a miss and the target. Accordingly, the 
number of hits in excess of its MCE value is taken to be e(1  p)N, so that the 
mean z-score may be written as 

                                     ázñ  e(1  p)N/p(1 –p )N1/2                                                            (13)

If a probable small difference between the mean z-scores for single-trial and 
many-trial experiments is disregarded or comparison is restricted to one type 
of experiments, the mean z-scores depend solely on the multiplicity m  1/p of 
the experiments. This will now be indicated by the subscript m. Substituting in 
Equation (13) ázñ2 for eN and cancelling N leads to 

                                              ázñm    ázñ2 (1 – p)/ p(1 –p )1/2                                              (14)

Note that the denominator in Equation (14) tends toward zero with decreasing 
p. Straightforward manipulations transform this into the simple form

                                                     ázñm    (m – 1)1/2 ázñ2.                                                       (15)

This relationship was recently proposed (Helfrich, 2008) to explain the 
large difference of the shift of the z-score distribution of falling dice from that 
of binary RNGs. Incidentally, the generalized binary effect bears a similarity 
to the above-mentioned indifference of the PK effect per die on the number of 
dice in a throw.             

The ratio of the shifts ázñ6 /ázñ2  5  2.34 predicted by Equation (15) is 
indeed close to the experimental value 1.5/0.65  2.31 obtained with the mean 
shift of the dice experiments if all of them are included. Equation (15) fails when 
only the balanced dice experiments are considered, which reduces the ratio of 
the shifts to 0.917/0.65  1.41. It also fails when applied to Ertel’s (2005) ball 
drawing test, as it predicts ázñ5 /ázñ2  2, while the experimental value is ázñ5 
/ázñ2  0.79/0.65  1.22. The latter could, perhaps, be raised markedly if the 
psi-induced near misses reported by Ertel can be counted among the hits. A 
questionable feature of Equation (15) is the predicted divergence of ázñm with 
m, suggesting a method to achieve high levels of signifi cance in a single psi 
experiment. 

It is tempting to speculate that the two simple formulas just introduced 
might be useful as the lower limit (the constant-ázñ model) and the upper 
limit (the generalized binary model) for ázsequñ or áztrialñ in a psi experiment of 
multiplicity m > 2. If the constant-entropy model is regarded as the basic one, 
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“proximity” or “similarity” or other psychological effects could increase ázñm 
up to the limit prescribed by the generalized binary model. Both the near misses 
in Ertel’s ball drawing tests and a preference for certain die faces in the fall of 
dice are possible examples. In one case it seems to be numerical proximity, in 
the other it might be a subconscious predilection for certain numbers. Such 
effects could result, whenever m  2, in a deformation of the distribution of hits 
which depends on the specifi cs of the experiment.

Switching Properties of PK for Multiplicity m = 2

How the mind may act on the neuron via the neuron’s synapses has been 
discussed elsewhere (Helfrich, 2007). The general problem of psi-induced 
switching in the case m  2 may be worth being treated again, mainly to include 
one-trial experiments and the effect of widening. The limiting hit rates of 
statistical psi effects are unity and zero, i.e. a hit every time or no hit at all. 
Because of Equation (3) and m  1/p, the associated effect sizes are e  (m 
− 1) and e  − 1/(m − 1), which for m  2 take the values e  1 and e  −1, 
respectively. If the hit rate is 50% in the absence of psi and 60% in its presence, 
as in dream psi experiments, the surplus rate of hits over misses is 20% of the 
normal hit rate, but 50% of the psi-reduced rate of misses. This is a substantial 
effect and not too many single-trial experiments are needed to achieve 
statistical signifi cance. Of particular interest seems to be the case of many-trial 
experiments at large enough N where a Gaussian distribution of z-scores exists 
and is shifted by PK. Let me assume that a critical z-score separating on- and 
off-states is located at z  1.96, so that without psi the chance probability for 
z ³ 1.96 is P(1.96)  2.5%, a typical value for the limit of signifi cance. The 
state z ³ 1.96 is regarded as the on-state, while lower z-scores belong to the 
off-state. In the presence of psi with a non-fl uctuating zpsi  0.65, the chance 
probability for z ³ 1.96 becomes P(1.96 − 0.65)  P(1.31)  9.5%. If widening 
is taken into account, the argument of P in the last equation has to be divided 
by the widening factor   1.5, which leads to P(0.87)  19.1%. These ideas 
may now be applied to mind–neuron interaction. Here the z-score represents 
an electric potential divided by its standard deviation from its MCE value. The 
critical value of z is taken to represent the threshold potential which, when it 
is exceeded, causes the neuron to fi re a new action potential into its axon. The 
circa 10,000 synapses of the neuron are assumed to act like 50:50 probabilistic 
switches when an action potential arrives through one of the presynaptic axons. 
Together, they thus mimic a binary RNG emitting, instead of bits, either a small 
amount of electric charge or no charge. A complete theory has to include the 
dynamics of the neuron potential, replaced here by potentials that are static 
during each switching period (of a few ms). Taking into account the dynamics 
probably lowers the quality of switching, while the fl uctuations of the z-score 
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might improve it. An increase of the probability of fi ring an action potential 
from 2.5% to 19.1% may appear too small for suffi ciently reliable switching. 
Several switching processes in series or in parallel may be required for a useful 
effect. On the other hand, probability differences near 100% seem unreasonable. 
After all, one has to expect that psi allows infl uence but no control, at least in 
everyday situations. In particular, while persons may be able to communicate 
to some extent by means of psi, they should not be able to enslave each other 
in this way. Similar anthropic arguments with regard to ázsequñ were put forward 
in the previous article.   

Concluding Remarks

The search for relationships between mean values yielded three intriguing 
fi ndings. First, the mean z-score at m  2, i.e.with two equivalent choices, is 
nearly indifferent to the number of trials in isolated experiments down to 
N  1. Second, it is equal or nearly so in PK and ESP. Third, the widening of 
the z-score distributions of many-trial experiments can be explained in terms 
of a Gaussian scattering of the effect size. The three relationships require, of 
course, further examination before they can be considered proved. In particular, 
the Gaussian shape assumed for the psi-modifi ed z-score distributions of PK 
experiments with RNGs and dice is so far only an approximation to rather 
rough experimental distributions. Two models were proposed that might give 
the widening factor as a function of the shift at any m if the relationship is 
known for m  2. One of them may be correct, but cannot yet be defi nitively 
checked because of problems with the data on falling dice and unavailability of 
the data in the case of ball drawing. Moreover, two attempts to relate the mean 
z-score at arbitrary m to that at m  2 seem to fail. It was argued that this may 
be due to a discrimination, under the infl uence of psi, between targets of equal 
MCE hit rate.                

A basic equality of the mean z-scores at m  2 in isolated PK and ESP 
experiments, and only a weak dependence of them on the number of trials 
in an experiment, would be in accordance with an often-noted far-reaching 
indifference of psi experiments to distances in space and time and, in the case 
of PK, to the type of binary RNG. The order of magnitude of the mean z-scores, 
which seems to emerge in such experiments, appears compatible with a possible 
role of psi in mind–neuron interaction and extrasensory communication. The 
conjecture that these two phenomena (of enormous philosophical and practical 
implications) do exist may be no more than fantasy, but it is supported by 
experimental results in statistical parapsychology.
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