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Abstract—Signal averaging can reveal patterns in noisy data from 
repeated-measures experimental designs. A widely known example is 
mapping brain activity in response to either endogenous or exogenous 
stimuli such as decisions, visual patterns, or auditory bursts of sound. 
A common technology is EEG (electroencephalography) or other 
monitoring of brain potentials using scalp or embedded electrodes. 
Evoked potentials (EP) are measured in time-locked synchronization with 
repetitions of the same stimulus. The electrical measure in raw form is 
extremely noisy, reflecting not only responses to the imposed stimulus 
but also a large amount of normal, but unrelated activity. In the raw data 
no structure related to the stimulus is apparent, so the process is repeated 
many times, yielding multiple epochs that can be averaged. Such “signal 
averaging” reduces or washes out random fluctuations while structured 
variation linked to the stimulus builds up over multiple samples. The 
resulting pattern usually shows a large excursion preceded and followed 
by smaller deviations with a typical time-course relative to the stimulus.
Keywords: evoked potentials; Global Consciousness Project; time-series,  
          evoked response 

The Global Consciousness Project (GCP) maintains a network of 
random number generators (RNG) running constantly at about 60 
locations around the world, sending streams of 200-bit trials generated 
each second to be archived as parallel random sequences. Standard 
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processing for most analyses computes a network variance measure for 
each second across the parallel data streams. This is the raw data used 
to calculate a figure of merit for each formal test of the GCP hypothesis, 
which predicts non-random structure in data taken during “global 
events” that engage the attention and emotions of large numbers 
of people. The data are combined across all seconds of the event to 
give a representative Z-score, and typically displayed graphically as a 
cumulative deviation from expectation showing the history of the data 
sequence. 

For the present work, we treat the raw data in the same way 
measured electrical potentials from the brain are processed to reveal 
temporal patterns. In both cases the signal-to-noise ratio is very small, 
requiring signal averaging and smoothing to reveal structure in what 
otherwise appears to be random data. Applying this model to analyze 
GCP data from events that show significant departures from expectation, 
we find patterns that look like those found in evoked potential (EP) 
work. While this assessment is limited to graphical comparisons, the 
degree of similarity is striking. It suggests that human brain activity in 
response to stimuli may be a useful model to guide further research 
addressing the question whether we can observe manifestations of a 
world-scale consciousness analogue.

INTRODUCTION
The surest and best characteristic of a well-founded and extensive 
induction . . . is when verifications of it spring up, as it were, 
spontaneously, into notice, from quarters where they might be 
least expected, or even among instances of that very kind which 
were at first considered hostile to them. Evidence of this kind is 
irresistible, and compels assent with a weight which scarcely any 
other possesses.

     —John Herschel (1880/1830)

Since the middle of last century, brain science has been developing 
sophisticated ways of tapping into neurological activity to learn 
more about how the brain accomplishes the remarkably complex 
manifestations of human consciousness. The work is specialized 
because there are so many kinds of questions, and most answers raise 
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more questions. A major area of research uses measures of electrical 
potentials as they vary during activity of the brain. One of the most 
familiar technologies is electroencephalography (EEG) research, with 
multiple electrodes arrayed over the scalp to capture brain activity 
corresponding to experiences and activities of the human subject. A 
sharply focused subset of that technology uses fewer electrodes (an 
active and reference pair at minimum) to record neural responses 
from a limited region. Examples are visual evoked responses to a flash 
of light or an alternating checkerboard pattern, and auditory evoked 
responses to sound bursts or patterns. The electrical data recording is 
synchronized to the stimulus onset or pattern, so analysis of the data 
can identify the onset of the stimulus and track the evoked response 
over time. Because the data are very noisy, signal averaging is used to 
compound the data over many epochs. This washes out the unstructured 
background noise while gradually building up an averaged response to 
the repeated stimulus. Results are typically presented as a graphical 
display where variations of the sequential data can be seen in relation 
to the time of the stimulus. 

In this paper we ask a similar question of event-related segments 
within the database recorded by the GCP over the past two decades. 
The data are parallel random sequences produced by a world-spanning 
network of RNGs that record a trial each second comprising 200 
random bits. The result is a continuous data history that parallels the 
history of events in the world over the same 20 years. The GCP was 
created to ask whether big events that bring large numbers of people to 
a common focus of thought and emotion might correspond to changes 
or structure in the random data. Specifically, the hypothesis to be tested 
states that we will find deviations in random data corresponding to 
major events in the world. This general hypothesis is instantiated in a 
series of formal tests applied to events that may engage the attention 
and emotions of millions of people around the world. For each selected 
event, analysis parameters including the beginning time, end time, 
and the statistic to be used are registered before any examination of 
the data. Over the period from 1998 to 2016, 500 individual tests were 
accumulated in a formal series whose meta-analysis constitutes the 
test of the general hypothesis. The bottom line result shows a small 
but persistent effect with a Z-score averaging about 1/3 of a standard 
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deviation. Though small, the accumulated result over the full database 
is a 7-sigma departure from expectation, with trillion-to-one odds 
against it being chance fluctuation. This robust bottom line indicating 
there is structure in the data supports deeper examination that may 
illuminate the sources and implications of the anomalies.  

Data Characterization
The analysis used for most GCP events is straightforward. For each 
second, the standardized Z-scores for each RNG in the network are 
composed as a Stouffer’s Z, which is an average across roughly 60 
RNGs expressed as a proper Z-score. This is squared, to yield a chi-
square with 1 degree of freedom that represents the network variance 
(net-var) for that second. These are summed across all seconds in the 
event and normalized to yield a final score. Algebraically, the net-var 
calculation is closely approximated by the excess pairwise correlation 
among the RNGs for each second. With 60 or 65 RNGs reporting, there 
are approximately 2,000 pairs, so this estimate of deviation is robust. 
Additionally, the pairwise calculation carries more information and 
allows examination of questions that the simpler measure of composite 
network variance can’t accommodate. For our purposes here, however, 
the net-var measure is sufficient. We use all the data—the second-by-
second scores—representing the longitudinal development during 
each specified event. In other words, we will be examining the time-
series character of the data sequences that define the events. 

Data Display
The GCP frequently uses a “cumulative deviation” graph to show the 
data corresponding to an event selected because it engages mass 
attention. This type of display was developed for use in process 
engineering to facilitate detection of small but persistent deviations 
from the norms specified in manufacturing parameters. It plots 
the sequence of positive and negative deviations from the expected 
value as an accumulating sum that shows a positive trend if there 
are consistent positive deviations, and a negative trend for negative 
deviations. It looks somewhat like a time series, but because each point 
includes the previous points, it is autocorrelated (which emphasizes 



250 R o g e r  D.  N e l s o n

Figure 1.  GCP network response to a terrorist bombing in Iraq, October 25, 2009. 

persistent departures). Cumulative deviation graphs are well-suited to 
showing the typically tiny differences from expectation in our data and 
emphasizing any signal that may be present. The technique mitigates 
random variation while summing consistent patterns of deviation, thus 
raising signals out of the noise background. 

It will be helpful to look at an example of an event shown graphically 
in this format. Figure 1 represents the GCP network response to a 
terrorist bombing in Iraq. It was a global event in the sense that people 
all around the world were brought to attention and shared emotional 
reactions. To an unusual degree the thoughts and emotions of millions 
of people were synchronized. It was a moment in time when we were 
recruited into a common condition by a major event on the world 
stage. The event was specified with a duration of 6 hours. This is the 
most commonly defined event period, which is typically used when 
something happens that has a well-defined moment of occurrence. 
The initiating event, in this case a bomb explosion, can be regarded as 
a “stimulus” to which mass consciousness—and the GCP network—
responds. 
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Reading the graph may benefit from a little instruction. The 
jagged line is the cumulative deviation of the data sequence, which 
can be compared against the smooth curve representing the locus of 
“significant” deviation at the p = 0.05 level. The terminal value of the 
cumulative curve represents the final test statistic, and the curve shows 
its developing history; it displays, for example, the degree of consistency 
of the effect over the event period. You can readily see that for much of 
the period, the data deviations tend to be consistently positive.  

Early explorations indicated that any effects we might see in the 
data take some time, half an hour or more, to develop, followed by two 
or three hours or more of persisting deviations. Experience brought 
us to a specification of 6 hours as a period that would usually be long 
enough to capture any event-correlated deviations, and short enough 
to distinguish the particular case from the background of ongoing 
activity in our complex world. It is enough time for most events to 
affect people local to the event, but also the mass of people around the 
globe with access to electronic media, radio and television, the Internet, 
and mobile networks. This example shows a quite steady trend for 3 
or 4 hours, after which it levels out, meaning the average deviation is 
near zero. The endpoint is near the level of statistical significance and 
the event as a whole contributes positively to the GCP bottom line. 
It can be thought of as the response of the RNG network during a 
moment when our hypothesized global consciousness came together 
in a synchronous reaction to a powerful event. 

Though useful, this cumulative deviation presentation obscures 
the time-course of variations in the raw data, for good cause, as 
explained above. But our present interest will require starting with raw 
data to look at structure of a different kind. 

Evoked Potentials
An evoked potential (EP) or event-related potential (ERP) is an electrical 
potential recorded from the nervous system, usually the brain, during 
and following the presentation of a stimulus. Visual EP are elicited by 
a ! ashing light or changing pattern on a computer display; auditory 
EP are stimulated by a click or tone presented through earphones; 
somatosensory EP are evoked by electrical stimulation of a peripheral 
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nerve. Such potentials are useful for diagnosis and monitoring 
in various medical procedures. EP amplitudes tend to be low, and 
to resolve them against the background of ongoing EEG or other 
biological signals and ambient noise, signal averaging is required. The 
recorded signal is time-locked to the stimulus, and, because most of 
the noise occurs randomly relative to that synchronization point, the 
noise can largely be canceled by averaging repeated responses to the 
stimulus. 

In Figure 2, positive potentials are up, though graphic displays 
of EP o" en use a convention of negative potentials up. This image 
shows a normal somatosensory EP and is structurally similar to EP in 
other sensory modalities, with a central peak preceded and followed 
by a smaller peak with opposite sign. The smooth continuous curve is 
the result of signal averaging over hundreds of epochs, typically each 
generated using the same stimulus with locked synchronization of the 
recording. High frequency noise is reduced by additional smoothing.

Comparison
In the GCP database, each of the 500 formal events can be thought of 
as analogous to an epoch like those recorded in EP research on human 
sensory and neurophysiological systems. There is a stimulus in the form 
of an event that engages the attention of huge numbers of people. It 

Figure 2.  A normal somatosensory evoked potential (EP). 
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may be a terrorist attack or an earthquake or a mass meditation, but it 
serves to recruit attention and stimulate synchronous activity in millions 
of minds. Speculatively, but consistent with the data deviations that 
correspond to the event, it acts as a stimulus to a global consciousness. 
This is obviously a model that di# ers little from poetry—unless we $ nd 
in the data substantial reason to believe the model is apt and worth 
exploring. We already have some other indicators that support this 
kind of model. For example, an examination of the 500 GCP events 
aggregated in categories such as type of event, size, importance, 
emotional intensity, and speci$ c emotions such as fear and compassion, 
shows that “global consciousness” responds much as an individual 
human does in analogous situations. Another correspondence is that 
deviations linked with the identi$ ed global events are larger when 
people are awake than at night when they are more likely sleeping. On 
one level this isn’t a big surprise, yet considering that we aren’t talking 
about individual behavior, but an interaction on a global scale, it is 
thought-provoking.

Yet another indicator of consonance between ordinary human 
consciousness and hypothesized global consciousness is structure in 
the event data that is similar in form to what is seen when a sensory 
stimulus impinges on the human brain. The scale is very di# erent, 
by a factor of 10,000 or more. The human nervous system typically 
begins to respond within tens of milliseconds, and the full response 
to a single visual or auditory stimulus takes half a second or more. 
Our estimates of GC responses suggest a time period of a few hours. 
To take a particular example, comparing a half-second brain event to a 
3-hour global event gives a ratio of a little over 1 to 20,000. Yet, when 
we compare responses of these systems with their wildly di# erent 
scales, we see remarkable similarity in the de$ ning structures.

First, we return to the discussion of raw data versus the cumulative 
deviation data we ordinarily show in graphical presentations. To process 
GCP data in a way that is directly analogous to EP data, we must begin 
with the unprocessed chi-square sequence representing the network-
variance response to global events. In Figure 3, the upper le"  panel 
shows the usual cumulative deviation plot of data for a composite of 
nine formal events that showed a signi$ cant deviation of the net-var 
measure. These all are 6-hour events like the example above, but we 
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are now signal-averaging the events as described for evoked potentials. 
The other panels in Figure 3 show the raw chi square data and two 
levels or stages of smoothing, to visualize how the process works.

The data from both research categories, EP and GCP, are noisy and 
require statistical $ nesse for analysis (Figure 4). To extract and display 
signals from the noise background, we use signal or epoch averaging. 
In brain research, hundreds of measures are taken with data recordings 
synchronized to the stimulus onset. When these are “stacked” on top of 
each other and averaged, the random noise tends to cancel and wash 
out, while any pattern that is linked to the stimulus will gradually build 
up to show the signal—the time-course of the brain response. Even with 
a large number of repetitions, the averaged data usually retain high-
frequency noise, but this can be mitigated by smoothing. A window 
encompassing several sequential data points is averaged, then moved 
to the next point, progressively along the whole sequence. The result is a 
relatively smooth curve that represents the patterning of amplitude and 
direction of deviations from the background or baseline activity. 

Figure 3.  Upper le(  panel: Cumulative deviation graph for a composite of 9 
signi) cant formal events. Upper right panel: Raw data for the composite. 
Lower panels: Two levels or stages of smoothing the raw data.  
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Figure 4A and Figure 4B allow a visual comparison of an EP 
graph with a GCP graph. The EP example, Figure 4A, shows the evoked 
potential from an auditory stimulus. It is an example of data gathered 
in clinical research (Anbarasi, 2019). Figure 4A is described as a normal 
electrocochleaogram (OCoG), and it displays signal-averaged data 
from electrodes placed trans-tympanically into the cochlea. It uses the 
convention found in much of the evoked potential literature showing 
negative potentials upward. It is typical in displaying a large primary 
spike with smaller variations before and a" er, some of which are 
su%  ciently distinct and regular as to be labeled.

Figure 4.  Comparison of an EP graph with a GCP graph.
 A) EP from an auditory stimulus.
 B) Composite of GCP data from nine 6-hour events. 

A) Signal-averaged auditory EP

B) Signal-averaged GCP event response
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Figure 4B is an example of GCP data treated in the same way. This 
is a signal-averaged composite of data from nine of the 6-hour events 
described earlier. These were chosen because they show a clear e# ect as 
indicated by a signi$ cant terminal deviation. The whole dataset for each 
event includes 12 hours before and a" er the event period, for a total of 
30 hours. As described earlier and shown in the four-panel Figure 3, 
we use the raw data (net-var measure at 1 per second) rather than the 
cumulative deviation of the net-var, in order to parallel what is done in 
EP research. (You may recognize Figure 4B as an inverted version of 
the lower right panel of Figure 3.) Following the analysis procedures 
for EP, the signal-averaged raw GCP data are smoothed with a moving 
(sliding) window long enough to reveal the major structure. For the 
6-hour events, an appropriate window is 3,600 seconds. High-frequency 
noise is then mitigated by a second pass. The result is a smooth curve 
representing the major (low band-pass) variations of the data during 
the events. The structure represents the common features across 
repeated measures of data deviations during major events. 

The signal-averaging process was also applied to a sample of 24-
hour events in the GCP database (Figure 5). There are 12 such events 
meeting the signi$ cance criterion, making them likely cases of a real 
e# ect correlated with the speci$ ed events. The 24-hour event data are 
surrounded on both sides by 24 hours of non-event data. The same kind 
of smoothing with a coarse and $ ne pass was used as for the 6-hour 
events, so the smooth curve represents a low band-pass $ ltering of the 
raw data. For the EP comparison, we show a positive up-trace of an 
auditory evoked potential. 

The visual matching in this case is as compelling as the 6-hour event 
example, but the variability of data in both domains is large even with 
statistical smoothing. EP research shows a wide variety of detailed graph 
shapes, but there is a common theme: small shi" s in one direction, 
followed by a larger, primary shi"  in the opposite direction, then a return 
to baseline and o" en a small opposite peak or damping oscillation. 

Interpretation
Many interesting questions are brought into view by the comparison 
of EP versus net-var structure. There are di# erences, of course, beyond 
those relating to scale and to physical versus statistical measurement. 
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Yet it is worthwhile to think further about some of the questions. 
It seems important, given the fundamental character of the 

EP model, to consider what constitutes the “stimulus” to which the 
subsequent response is linked. In EP research that’s unambiguous—it 
is literally imposed by the experimental technology. In the GCP case, 
the stimulus isn’t quite so clear, though we can make a case that, at 
least for the 6-hour events, it is the point event to which the world 

Figure 5. Comparison of A) positive up-trace auditory EP, with
 B) GCP composite of 12 24-hr events.  

A) Signal-averaged sensory EP

B) Signal-averaged GCP event response
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responds. That, by de$ nition, occurs near the beginning of the event. 
But, is there a post-stimulus delay—the equivalent of the 10 to 50 ms 
in EP measures between the stimulus and the $ rst big spike in voltage? 
In the examples shown here, such a delay isn’t easy to identify, though 
there is some structure that might qualify. 

The GCP epochs averaged in the $ rst comparison are 6 hours in 
duration, surrounded by 12 hours preceding and following the formal 
event, with the “stimulus” roughly at the beginning of the event period. 
The stimulus in the 24-hour $ gure might be posited at the 24-hour 
point marked by the vertical line, but in most of these cases the e# ective 
stimulus is episodic or distributed over the 24-hour period. 

There are speculative suggestions worth considering. Many events 
in the GCP experiment are in a strong sense internally de$ ned. That 
is, the event exists only when it happens, so it is its own stimulus. 
This is most obviously the case for 24-hour events such as organized 
meditations and demonstrations. It may also be of value to think of 
endogenous stimuli. For example, a decision to act, say move a $ nger, 
may appear in the EP data before it appears in consciousness. We 
note that the 24-hour subset does show a building response before 
the event period begins. A moving average incorporates later data 
into the present calculated point, but only about 30 minutes of the 
apparent 3–4-hour early buildup can be attributed to the mathematical 
smoothing process.

The primary research question is how any stimulus translates into 
a structured response in the random data from the GCP network. Why 
do our physical random devices become correlated at times when the 
thoughts and emotions of many humans become synchronized and 
coherent? The data say this is no accident or coincidence, and the 
experimental design ensures these correlations are meaningful. Could 
that widespread coherence generate an information $ eld with the 
capacity to produce correlations in the random data? Do the intentions 
and expectations of researchers enter into the de$ nition and execution 
of an experiment with results showing structure in what should be 
random data? There are multiple “explanations” for the small but 
highly signi$ cant data deviations, but thus far none is fully satisfying. 
Probably we need to look for explanations that recognize and integrate 
multiple sources. 
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Global Consciousness versus Goal Orientation
It seems appropriate to look at the material that stimulated this 
excursion into analogues for the GCP event data. Peter Bancel spent 
many years doing careful post hoc analysis on the GCP database looking 
for information and parameters to de$ ne a global consciousness 
(GC) model. He worked progressively toward demonstrations that 
generalized $ eld models were a good $ t to the data, and showed 
they were signi$ cantly better than another major contender, DAT-like 
selection models that posit precognitive information about future 
results driving present choices (e.g., when to start the experiment) 
(Bancel & Nelson, 2008; Bancel, 2011; Nelson & Bancel, 2011). His 
most direct presentation of the case for $ eld-like models was a 2013 
paper submitted for presentation to the Parapsychological Association 
annual meeting (Bancel, 2013). Not long therea" er, Bancel reversed his 
position and began describing and promoting a goal orientation model 
(GO) that is essentially the DAT approach he had earlier rejected (Bancel, 
2015). 

The GO model postulates psi-based experimenter selection of 
parameters, in particular the starting and ending points of the events. 
This model addresses only the primary measure, and is incapable of 
dealing with other structural elements of the GCP data, but Peter 
argues that GC can’t work, for technical and philosophical reasons. He 
supports his argument by a graphical analysis, shown in Figure 6A. It 
is from a paper summarizing Peter’s views on the most suitable model 
for GCP $ ndings (Bancel, 2017).

The Figure 6A graph shows reversals at event boundaries that 
justify a preference for GO by conforming to an idealized selection 
model. Figure 6A is a composite of all short GCP events, which 
nominally allow the experimenter to select start/end times. (This is 
in fact not the case for a large proporton of the events. For example, 
many events are repetitions that use the prior speci$ cations, or use 
timing drawn from media reports.) The proposal is that experimenter 
psi can achieve a desired future result by selecting from the naturally 
varying data sequence an appropriate deviant segment. Further, Bancel 
argues that selecting points in the data sequence that de$ ne a positive 
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segment will cause the preceding and following segments to show a 
de$ cit or a negative tendency (Personal communication, July 8, 2016): 

If there is a choice of how to partition a null dataset, so that 
the chosen segment has a mean >0, then the remaining 
segment will necessarily (on average) have a mean <0. 
Choosing a start time is like this because the choices all are 
relatively proximate: You realistically might choose a time a 
minute earlier or later; or 15 minutes earlier or later; but not 
12 hours or 12 days earlier or later.  

Figure 6. A) Cumulative deviation, short GCP events (from Bancel, 2017).
 B) Smoothed raw data, short GCP events (derived from Figure 6A). 

A) Cumulative deviation, short GCP events

B) Smoothed raw data, short GCP events
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I think this argument is fallacious—not least because it sounds 
like the gambler’s fallacy (Bennet, 2019), given that the “null dataset” 
is by de$ nition random and is continuous over years. The “balancing” 
seen in the composite $ gure clearly needs a better explanation. 

Something about this graphical presentation tugged at my 
unconscious for months—rooting around in old memories looking 
for images akin to this oscillating picture. Finally, it bubbled 
up to the surface. The graphic was reminiscent of event-related 
neurophysiological measures, which also show an oscillating response, 
albeit with a di# erent shape. To see the connection more clearly it was 
necessary to revert to raw data, as described earlier. In order to process 
these data using the EP procedures, I decomposed Bancel’s original 
cumulative deviation $ gure to produce a $ le of equivalent raw data and 
proceeded with smoothing. The result is shown in Figure 6B. It bears 
out my intuition that it should look like EP data.         

The cumulative deviation graph of the GCP “short” events shows 
sharply delineated in! ections at the event boundaries, even though 
it includes a large proportion of null and negative outcome events, 
and still more events with previously determined, $ xed parameters 
(there is no selection). The precision of the $ t to the idealized model 
is surprising, given the large proportion of events that do not conform 
to the required conditions. Perhaps the shape of the curve has another 
source than the proposed, goal-oriented psi data selection. The 
smoothed raw data graph, mimicking physiological EP measures, 
suggests a viable candidate.

Bancel made a similar $ gure for all the GCP formal data, $ rst 
normalizing all the various event lengths to a 24-hour standard (Figure 
7A). A context of 24 hours before and a" er was included in the plot, 
and as in the case of the short event example, there are in! ections at 
the event boundaries, and negative-going trends before and a" er. He 
argues that this supports the GO psi-selection model, but, as in the 
previous case, there are many exceptions—events that explicitly do not 
conform to the required model criteria where selection is allowed. And 
again, there is an alternative “explanation” for the shape of the curve, 
namely an event-related potential model. The graph of smoothed 
raw data, Figure 7B, derived from the “all events” $ gure is practically 
indistinguishable from typical EP graphs.
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An Independent Look
Dean Radin in the course of his peer review of this paper (personal 
communication, October 16, 2019) performed simulations that directly 
compared the two models and found no support for the GO perspective: 

I haven’t done any more simulations recently, but from what I 
did look at I see why positive trends would appear before and 
a" er an event. That’s due to the dependencies introduced 
by smoothing. But I don’t see how those trends would end 

Figure 7.   A) 72-hour context, all GCP events (from Bancel, 2017).  
 B) Smoothed raw data, all GCP events (derived from Figure 7A).

A) Cumulative deviation, all GCP events (normalized to 24 hrs)

B) Smoothed raw data, all GCP events (derived from Fig 7A) 
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up being negative. That doesn’t make sense logically nor is 
it what the simulations show. . . . [M]y sense is that Peter’s 
[Bancel]argument doesn’t stand up. 

These observations support my contention that some other 
explanation is needed for the shape of the cumulative deviation curves 
than that proposed by Bancel. His assertion that a selection model 
would produce negative deviations before and a" er the positive trend 
of the event data segment is not only logically dubious but is speci$ cally 
not supported in appropriate simulations. 

A Single Event
While the comparisons described above depend on signal averaging 
across multiple events meeting a criterion of signi$ cance, we can ask 
if a su%  ciently powerful individual event might show the same kind 
of structure. One that stands out in the GCP database is the terrorist 
attacks on September 11, 2001. The GCP network had been in place 
for three years and the number of Eggs (Electrogaiagram) had grown 
to 37, so the data recorded on September 11 were statistically robust. 
Because it was such a clear instance of an event that should instantiate 
the GCP hypothesis, we paid close attention. In addition to the a priori 
speci$ ed hypothesis test, we looked at other aspects of the event and 
did other analyses, including one extending the time period to include 
a context of 9 days around the event. The standard net-var calculation 
was applied to data from September 7th to September 15th. The slope 
of the cumulative deviation graph beginning when the $ rst World Trade 
Center tower was hit and continuing for nearly three days is extreme. 
An informal estimate for the probability lies between 0.003 and 0.0003 
(this means an odds ratio on the order of 1 in 1,000). Visual inspection 
(Figure 8) suggests the trend begins as much as a day before the planes 
crashed into the World Trade Towers and continues for more than two 
days a" er the towers fell.

Though the time-scale di# ers, the cumulative deviation graph for 
this singular event presents a picture that is much like that seen for the 
signal-averaged events shown above, leading us to ask what structure 
the corresponding raw data might show when processed using the EP 
protocol and low band-pass $ ltering.
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In Figure 9A, we see an answer to that question. The graph of 
smoothed raw data from the 9/11 context analysis does look like EP 
data, as can be seen here. It has the general form we have seen before, 
with a large deviation bracketed by smaller deviations of opposite sign. 
For a comparison, Figure 9B shows an example of evoked potentials 
recorded during tests of four cognitive processes: action-e# ect binding, 
stimulus-response linkage, action–e# ect feedback control, and e# ect–
action retrieval. While I chose this picture because it is a good match, it 
is representative of a broad class of event-related potentials.

DISCUSSION
We have seen multiple examples of striking similarity between event-
related brain potentials and event-related correlations in random data. 
Is the GCP network of widely distributed random number generators 
picking up something like the evoked responses of an earth-scale 
consciousness to powerful stimuli? If that idea is to be given serious 
consideration, how can the timing of the 9/11 “response” be explained? 
It can’t be regarded as an immediate response to the terrorist attacks 

Figure 8. Cumulative deviation graph of the September 11, 2001, terrorist event. 
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because the apparent changes begin more than a day earlier. Could 
the small group of 50 or 100 terrorists planning and working toward 
the attack be responsible? That would be counter to the experience and 
$ ndings of the Field REG studies of group consciousness. And it would 
be inconsistent with $ ndings in the GCP database, where coherence 
among small numbers of people is associated with small e# ects. It is 
arguably just as likely that a global consciousness, whatever its nature, 
might manifest presentiments of the future, given an emotionally 

Figure 9.  A) Smoothed raw data from 9/11 context analysis looks like EP data. 
B) Brain evoked potentials during tests of four cognitive processes.

B) Contingent negative variation EP

A)  Smoothed raw data for 9 days around 9/11
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powerful stimulus, just as humans do (Radin, 2004). We can even 
calculate roughly the dimension of the former. The ratio of global-
scale response times to the time-course of human perception is on the 
order of 20,000 to 1 (Nelson, 2019). The presentiment response shows 
up in physiological data on the order of 3 to 10 seconds before the 
stimulus. This corresponds in the GCP data to 0.7 to 2.3 days—in the 
same ballpark with the examples presented here. 

These analyses are interesting on multiple levels, and they raise 
good questions. It is premature to claim that the visual comparisons 
make a rigorous case akin to direct measures like recordings from the 
brain in EEG and EP work. We have only correlations and concordance. 
On the other hand, the conformance of event-related GCP responses to 
the general patterns of stimulus-related brain potentials is noteworthy. 
All the examples we have seen support the idea that the GCP network 
reacts to the stimulus of global events with temporal variation that 
practically duplicates the response of neural networks to relevant 
sensory stimuli. This explanation for the shape of the GCP data curves 
is arguably better than the experimenter psi-selection model proposed 
by Bancel. It is considerably more “down to earth” in that it requires 
no precognition of future system states to guide present choices. And 
there is no conundrum regarding events with $ xed parameters or null 
and negative results. It is comfortably compatible with some temporally 
local, $ eld-like model. While we can’t formally describe a mechanism 
that can connect a mass consciousness response to the RNG network 
deviations, there is a clear, well-established correlation. Notably, if we 
take a serious look, that is all we have in the evoked potential case as 
well—just established correlations. Yet, neurophysiologists use EPs for 
diagnosis and treatment with no further ado.

Almost all psi research depends on statistical rather than direct 
measures. But it can be argued that correlation is a thing, “ein Ding 
an sich,” and it is worth some e# ort to ! esh out that proposition 
(Atmanspacher, 2018). Can we draw an equivalence between statistical 
and physical measures? It is, at base, the same question as the more 
general one about information. Is it possible to formulate a relationship 
of information and energy that is like the one established early in 
the last century for energy and matter? If that happens, it will clarify 
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important issues, not only in psi research but more broadly in science 
and philosophy.

We will need a lot more data and much deeper thought to resolve 
such questions. 
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