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Abstract—An attempt is made to recognize a system behind the statistical 
psi eff ects that are evaluated in terms of hit rates. For this purpose, I formu-
late fi ve rules that appear to apply at least to studies of good quality with 
the most common chance hit rates p = ½ or ¼. A problem in the evaluation 
of the results arises from the fact that the hit rate h cannot be smaller than 
0 or larger than 1. This implies that the z-scores of an experiment, i.e. the 
ratio of deviation to standard deviation, and their mean values < z > can be 
limited as well. The true eff ect size should in principle be unbounded, but 
its standard defi nition by < z > may be expected to fail whenever h is near 
one of its boundaries. In order to deal with such a situation, most likely if 
an experiment consists of a single decision between hit or miss, an eff ect 
size is needed that is unlimited but for (h − p) 0 merges with < z >. Two 
such eff ect sizes are derived here from models of psi eff ects. Moreover, on 
the basis of a sixth rule, as yet preliminary, the scattering of the eff ect size, 
a common but little-explored phenomenon, and its possible consequences 
for the hit rate are dealt with. The comparison of the ratio of the < z >-scores 
of two extensively investigated psi eff ects with that of the corresponding 
conjectured true eff ect sizes helps to decide between the models. Another 
such comparison may suggest insuffi  cient separation of (ganzfeld-psi) ex-
periments. 

Introduction

On one hand, parapsychology deals with rare phenomena that very likely are 
anomalous and in general are not repeatable. They lack the reproducibility 
characteristic of the natural sciences. On the other hand, roughly since 
the middle of the last century there have been numerous investigations of 
psi effects of a very different, nearly opposite kind: The result of a single 
experiment remains within random noise, but the statistical analysis of a 
large number of equal or similar experiments proves the existence of the 
psi effect. The chance probability of the overall result tends to zero as the 
number of experiments increases, even though the size of the effect may vary 
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from study to study, including excursions to negative values. Accordingly, 
statistical psi effects are considered not reproducible but replicable. In a 
typical study, the mean of a stochastically fl uctuating quantity is shifted 
by the infl uence of psi in the desired direction. Examples are the increase 
of the hit rate above its chance value when faces of playing cards are 
guessed (ESP) or dice are thrown (PK). Many people believe they have 
had experiences of this kind when they played games of chance. Statistical 
parapsychology provides evidence that such anomalies actually take place, 
even in studies conducted under controlled conditions in the lab. Without 
dwelling on details of mathematical analysis, Schmidt (2014) recently gave 
a survey of experiments on statistical psi effects. An introduction to their 
evaluation was published by Tressoldi and Utts (2015).          

The statistically detectable psi effects appear to be everyday occurrences. 
They have been found at different places and by different investigators and 
participants. There are no regions or populations in the world that are known 
to be devoid of anomalous occurrences. Therefore, psi abilities are likely 
to be universal. However, the averages such as the hit rate of a particular 
study more often lie outside the confi dence limits of similar studies than is 
allowed by chance. Obviously, the effect size scatters, which adds to the 
scattering of z at fi xed effect size. This may seem to make it appear hopeless 
to search in statistical parapsychology for laws like those governing the 
natural sciences. Nevertheless, as in physics, measurements are taken and 
analyzed, and the data of the numerous investigated statistical psi effects 
could obey some rules. Unlike laws, these rules would allow for deviations 
and exceptions. Leaving aside the very rare reports on persons producing 
with some reliability a psi effect that far exceeds random noise, it may be 
worthwhile to think about a possible systematics behind the statistically 
detected psi effects.

The approach taken in the following is that of an applied physicist who 
wishes to orient himself in statistical parapsychology. In the next section, 
Conjectured Rules, I present a set of conjectured rules that possibly hold 
for all statistical psi effects, no matter whether it is psychokinesis (PK) or 
extrasensory perception (ESP). Only the data from hit-or-miss experiments 
with chance hit rates p = ½ and ¼ are considered, because they are 
particularly numerous and allow a simple and reliable analysis that can be 
adapted to other psi experiments whose evaluations are similar. A number 
of experiments on the same psi effect make up a study. The rules are based 
mostly on meta-analyses covering many studies of the same kind. Each 
single step in an experiment is a decision between hit or miss, to be called a 
trial in the following. An experiment consists of an arbitrary predetermined 
number of trials down to one. Its separation from equal experiments in a 
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study will be of central importance in the formulation of the rules. Studies 
in which the separation is obviously unclear are disregarded. 

Apart from the exceptions encountered in the Calculations section, the 
rules are formulated in terms of z-scores. The z-score of an experiment is 
defi ned as                                                                                                                                                                                        
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The nominator of the fraction is the deviation of the number k of hits from 
its expectation value pn, where p is the chance value of the hit rate and n the 
number of trials in the experiment, while the denominator is the standard 
deviation of k from pn. Averaging over a suffi cient number N of equal psi 
experiments, to suppress scatter, it may be expected to result in a reasonably 
stable value of the actual hit rate
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Using h, a mean value by defi nition, one may express the mean value of z by
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The mean z-score is identical to Cohen’s d that often, as in the present paper, 
serves as the defi nition of the effect size of an infl uence pushing z away 
from zero, its mean value for the null effect, that is in the absence of psi. 
The standard deviation of z from < z > is taken to be that of the null effect, 
which is < (z – < z >)2 >  = 1. It is in general augmented by a scattering of 
the effect size.1

In the Conjectured Rules section, apparently common properties of 
the statistical psi effects are sorted out from available data and the simplest 
possible rules for them are formulated. Calculations associated with the rules 
are assembled in the four sections under Calculations. The fi rst subsection, 
Unlimited Defi nitions of the Effect Size, addresses the problems that may 
arise from the fact that the hit rate h is restricted to the interval 0 ≤ h ≤ 1. 
Because of Equation (3), this implies that the < z >-score is also limited, the 

allowed range expanding with n  . Since the effect size per trial should 
in principle be unbounded, its standard defi nition by < z > is likely to fail 
when < z > is near one of its limits. The chance of h being so will be seen 
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to be greatest in one-trial experiments. In order to be able to deal with such 
cases, a defi nition of the effect size is desirable that is unlimited and at small 
enough values of h – p merges with < z >. Two defi nitions satisfying this 
condition and based on different models of psi effects will be proposed to 
convert < z > into a conjectured “true” effect size and vice versa. 

The two subsections Scattering at Small Effect Sizes per Trial and 
Scattering at Large Effect Sizes per Trial deal with the scattering of the 
effect size, which seems typical of psi effects. I will distinguish between 
weak and strong effect size scattering. It is called weak when the limits 
of h do not enter the calculation of shift and widening and it only widens 
the z-score normal distribution without affecting the shift < z >, while it is 
called strong when the limits need to be taken into account. In the case of 
strong scattering, the primary quantity that can be measured and calculated 
is the averaged hit rate, hav. It is understood as the integral over a new 
variable hqu from −∞ to +∞ of the product of h and its probability density, 
both as functions of hqu. The independent variable hqu will be defi ned by 
extrapolating the case of weak effect sizes. The averaged mean z-score 
< z >av is calculated from the averaged hit rate hav by means of Equation 
(3). Based on a small dataset, the quantitative treatment of scattering is 
speculative. Normal distributions of the conjectured effect size will be 
assumed as they are common in statistics and convenient in calculations. 
The only histograms of effect sizes I found in the literature more or less 
represent a normal distribution that is wider than that of the null effect 
and can be explained by weak scattering. Finally, I calculate the ratios of 
< z >av in the case of strong scattering (i.e. for n = 1) to < z > in the quadratic 
approximation (i.e. for n >> 1), which in most of the examples considered 
are less than one. In the subsection Comparisons with Experimental Data 
under the main Section Calculations, two comparisons are made between 
ratios of experimentally determined < z >-scores and the ratios of the 
corresponding conjectured true effect sizes, and cautious conclusions are 
drawn from the results. The Conclusions section presents a discussion of 
the rules and an argument as to why the small size of statistical psi effects 
might make sense for philosophical reasons and, if so, can probably not be 
substantially increased. 

In a previous paper by the author, it was argued that the sizes of all psi 
effects are roughly equal (Helfrich 2011). However, the difference between 
the < z >-scores of PK experiments on the binary random noise generator 
and dream-psi, both with p = ½, was found to be so large (0.65 versus 0.182, 
see Rule 5 below) that it was tentatively attributed to the fact that the former 
are many-trial and the latter one-trial experiments. This guess is examined 
in the subsection Comparisons with Experimental Data under the main 
section Calculations of the present paper.
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Conjectured Rules

For the sake of clarity, the rules are numbered. Of course, they could be 
differently arranged and in part decomposed or combined. They are based 
mainly on meta-analyses or reviews. The experimental results given here 
in support are in most cases not complete but a small number of examples.

Rule 1:  The effect size is independent of spatial distances.

The size of psi effects does in principle not depend on the distance between 
participant and object or recipient and sender. There are PK studies on binary 
random number generators (RNGs) that show this for terrestrial distances 
(Dunne & Jahn 1992, 1995). The independence of distance has also been 
checked in ESP studies (Steinkamp 2005). In one of them a decrease of 
the effect size was found at large separations. No signifi cant decrease with 
distance was noted in studies of remote viewing (Dunne & Jahn 2003).

Rule 2:  The effect size is independent of temporal distances.

The size of psi effects does in principle not depend on differences in time 
between participant and object or recipient and sender. In their meta-analysis 
of precognition studies, Honorton and Ferrari (1989) found a dramatic 
decrease of the hit rate with increasing delay, which largely takes place 
within the fi rst day. However, no such decay was observed in studies with 
selected participants. In the studies of Bem (2011), cards were guessed with 
the target being randomly selected only after the guess. This was interpreted 
as a retroactive psi effect, but PK as another possible explanation was not 
ruled out. In their PK studies on binary RNGs, Dunne and Jahn (1992, 1995) 
found no signifi cant infl uence of the time shift between mental aiming and 
operating the RNG. The time of aiming varied from 73 hours before to 336 
hours after the generation of the RNG data. The transition from PK to a kind 
of retroactive psi effect produced no signifi cant break in the scatter plot of 
z-scores. An independence of temporal distances was also registered with 
remote viewing (Dunne & Jahn 2003).  

Decreases of psi effects with increasing spatial and temporal distances 
are possibly due to a diminishing emotional relationship of the participant to 
the object or of the recipient to the sender. While the emotional relationship 
of a participant to an object is diffi cult to quantify by normal means, the 
decisive role of a close bond between sender and receiver was observed by 
Hinterberger (2008) who measured psi-induced physiological correlations 
at mostly large distances. Studies of the effect size as a function of distances 
and other parameters are much more demanding than proofs of existence of 



392 Wo l f g a n g  H e l f r i c h

a psi effect. This is because the number of experiments has to be divided 
among the data points and the error of differences combines the errors of 
two data points.

Rule 3:  The effect size is independent of the number of participants.

It does not matter much how many persons take part in an experiment, 
actively or passively. To employ several senders or recipients is what most 
physicists and engineers tend to suggest fi rst when being told how weak psi 
effects are. Evidently, the lack of success of such attempts is the reason why 
group experiments have early on ceased to be of interest. Disappointing 
group studies of precognition and ESP in general were mentioned by 
Honorton and Ferrari (1989) and Steinkamp (2005), respectively. Dunne 
and Jahn (1995) found in their PK experiments that the success of pairs of 
participants decreased when they were equal in gender but increased when 
they were opposite, as compared with the success of single participants. The 
effect size was found to be four times larger than that of single participants 
when the pairs of opposite gender were “bonded,” as were seven pairs in 
this study.

Rule 4:  The effect size per experiment is independent of the 
predetermined number of trials in the experiments. This is on condition 
that on the one hand the experiments are closed, i.e. without breaks, and 
on the other hand clearly separated from equal or similar experiments.

The separation seems to be assured in two kinds of experiments consisting 
of a single trial. One of them is dream-psi (Sherwood & Roe 2003), where 
the temporal distance between experiments is at least a day. The other is 
ganzfeld-psi (Williams 2011), where the time interval between experiments 
is about an hour. This may not be long enough, but it seems that in addition 
usually the participant was changed between experiments. When an 
experiment consists of more than one trial, the conditions for Rule 4 seem to 
be well-satisfi ed if in a study each participant performs a single experiment 
that consists of a compact series of trials. Such sessions at a binary RNG 
that comprise roughly 20 to 50 trials are today the method of choice in many 
studies. In remote-viewing studies, which in addition to a recipient often 
involve an observer who may function as a sender, the temporal distance 
between experiments seems in general large enough for a clear separation, 
but a change of the participants would be safer. Interestingly, Baptista, 
Derakshani, and Tressoldi (2015) recommend that no more than one or 
two experiments of this kind should be carried out per day by the same 
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  participant in order to avoid fatigue or boredom. Another problem with 
these studies, discussed in detail by Dunne and Jahn (2003), is bringing the 
perception tests into the shape of yes-or-no questions with known chance 
probabilities.

An indirect confi rmation of Rule 4 is the change in the common 
defi nition of the effect size over the course of several decades. In the 
beginning, it referred to the single trials, regardless of their number in 
an experiment, whose z-scores were thought to be independent of n. 
The smallness and the extreme scatter of the mean z-score thus obtained 
gradually led to a redefi nition. Today the effect size practically always refers 
to whole experiments. How strictly < z > is independent of n has rarely been 
checked. An early form of Rule 4 put forward together with experimental 
confi rmation is the data augmentation theory (DAT) of May, Utts, and 
Spottiswoode (1995). According to this theory, clairvoyance unconsciously 
recognizes and selects rows of trials of reduced entropy in PK experiments 
(May et al. 1995). Numerous references to the DAT model are given in a 
book edited by May and Marwaha (2015).

The most convincing confi rmation of Rule 4 is provided by the meta-
analyses of Radin and Nelson (1989, 2000) of PK experiments with binary 
RNGs. They took the data from about 150 English-language references 
including papers published in conference proceedings, thus collecting 
nearly 600 experiments. In the absence of psi, the RNGs produced zeroes 
and ones with equal probability. The aim of the psi experiments was to 
mentally infl uence the PC so that it generates more ones than zeroes or vice 
versa. A most remarkable feature of these studies is the enormous range 
of the number of trials per experiment reaching from about 20 to 108. The 
deviation in the nominator of Equation (1) is the number of hits minus n/2, 
its chance expectation value. Without the psi effect, the scattering of the 
z-score results in a standard normal distribution. For this so-called null 
effect, the standard deviation of the z-score is σ0 = 1, and the expectation 
value E(z) = 0, which was checked and confi rmed by a histogram of 200 
such experiments. With a somewhat “smoothing” assumption, which of the 
assignment “insignifi cant” made a truncated null effect distribution, Radin 
and Nelson in their fi rst meta-analysis of the PK effect (1989) found a normal 
distribution of z-scores. Its histogram is not only shifted to < z > = 0.65 but 
also widened by a factor α = 1.5 with respect to the null effect. In addition, 
there are a few outliers, while none are visible in the null-effect histogram. 
They were partially suppressed by a homogenization before < z > and α 
were calculated. (However, the differences between the values of < z > 
and α calculated after homogenization and those taken directly from the 
histogram seem to be small.) Knowledge of < z > and α allows the computing 
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of the entropic energies of displacement and widening, respectively. For the 
combination of < z > = 0.65 and α = 1.5, they turn out to be practically 
equal (Helfrich 2011). The energies will be derived again in the subsection 
Scattering at Small Effect Sizes per Trial in the Calculations section, and 
their equality generalized in the subsection Scattering at Large Effect Sizes 
per Trial in support of Preliminary Rule 6. 

A problem of PK experiments with binary RNGs is the separation of 
the experiments from one another: “In general, within a given reviewed 
report, the largest possible aggregation of non-overlapping data collected 
under a single intentional aim was defi ned as the unit of analysis (hereafter 
called an experiment or study)” (Radin & Nelson 1989). One would like to 
know if interruptions like a pause or a change of participant were excluded 
in these experiments. They could cause a breakup into several separate 
experiments. With nʹ being the number of effective breaks, the z-score of 
an experiment increases by the factor 'n according to Stouffer’s formula 
(see next paragraph). Therefore, breaks could be a reason for the widening.

In their second meta-analysis which in addition contained 175 new 
or newly found experiments, Radin and Nelson (2000) cumulated the 258 
z-scores taken from PEAR (Princeton Engineering Anomalies Research) 

into a single one, using Stouffer’s formula, cum 1
/j N

jj
z z N


  . (This 

approximation becomes exact, apart from scattering, if < zj > can be taken 
to be the same for all experiments.) Was this done because decomposing 
the PEAR data into experiments was particularly diffi cult? In their second 
histogram of the PK effect, and in the histogram of Schub with a wider range 
of shown z-scores, the cumulated z-score is not marked and the indication 
“insignifi cant” is rendered simply by z = 0. Apart from the concentration of 
scores at z = 0 and a greatly increased roughness, there is little difference 
between the old and new histograms of Radin and Nelson.

The meta-analyses of Radin and Nelson (1989, 2000) were severely 
criticized by Bösch, Steinkamp, and Boller (2006a, 2000b) as well 
as by Schub (2006), who in their papers rejected its central result, an 
overwhelming proof of the existence of the PK effect. Radin et al. (2005a, 
2005b) defended the result. In the opinion of critics, the shift of the normal 
distribution of hit numbers is due to a publication bias. They overlooked 
the fact that the widening and the outliers produced data points on both 
sides of the spectrum that independently of the shift drastically reduce the 
probability of obtaining Radin and Nelson’s histogram of the psi effect by 
chance (Helfrich 2007).   

How to be convinced that the mean shift < z > is independent of the 
number n of trials per PK experiment at the binary RNG? First of all, the 
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huge range of n-values leaves little room for other inferences. A partition 
of 377 carefully selected experiments into four practically equal blocks 
according to the magnitude of n provides a kind of check (Bösch, Steinkamp, 
& Boller 2006b). With increasing n, the authors found the decreasing 
< z >-scores 1.05, 0.75, 0.56, and 0.41. The differences, though small, may 
be taken to mean that the widening found by Radin and Nelson results from 
a superposition of normal distributions centered at different < z >-scores. 
The reason for the maximum of < z > at the smallest n could be a relatively 
large number of interrupted experiments. This seems paradoxical, but 
most of the experiments with small n probably took place at a time when 
computer technology was nonexistent or only at its beginnings.  

It should be mentioned that three PK studies with an extremely high 
frequency of trials (2,000,000 per 0.2 sec, once every second) produced 
exceptional < z > ≈ −2, which is three times larger than what is measured 
at the usual 200 trials per 0.2 sec, once every second, and of the wrong 
sign (Ibison 1998, Dobyns et al. 2004). These results are signifi cant but in 
confl ict with Rule 4.

The overall effect size of the PK effect on binary RNGs obtained by 
Radin and Nelson (1989, 2000) in their PK meta-analyses, < z > = 0.65, 
lies on the upper border of mean z-scores of psi experiments. However, 
the same value was found by Honorton and Ferrari (1989) in a meta-
analysis of precognition experiments. The number of experiments covered 
was extremely large, but in contrast to the PK studies they were quite 
heterogeneous. An experiment was defi ned as the data measured between 
subsequent changes of the conditions. Again, the question arises if pauses 
or a change of the participant occurred within an experiment because a 
possible breakup into shorter experiments would have caused the measured 
< z > to be above its true value. Like Radin and Nelson, the authors found 
an increase of the standard deviation by a factor α as an accompanying psi 
effect. Before a homogenization discarding 10% of the z-scores as outliers, 
they obtained < z > = 0.65 and α = 2.48, thereafter < z > = 0.38 and α = 1.45. 

Rule 5:  The effect size is equal for all psi effects. Its fl uctuations among 
studies are about as large as the average size. (However, one of the 
unlimited defi nitions of the effect size to be proposed in the following 
predicts a dependence of < z > on the chance hit rate p according to 
which < z > has its maximum at p = ½ and tends to zero for p → 0 and 
p → 1.)

All psi effects, at least those with the most common chance hit rates p = 
½ and p = ¼ have similar effect sizes < z >. They lie preferably in or near 
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the interval 0.2 < < z > < 0.3. Values below 0.1 or above 0.8 are extremely 
rare. Such cases call for a check if perhaps the confi dence interval reaches 
into the preferred range. The rule applies to all modifi cations of ESP and 
PK, including retroactivity. Between studies of the same type, < z > can 
easily change by a factor of 2 or more, covering altogether a range whose 
boundaries differ by a factor of 4. In general, the limits of the confi dence 
interval are placed at z − < z > = ±1.96 σ0, so that the integral of the chance 
probability density over one or two tails of the normal distribution outside 
this range equals 0.025 or 0.05, respectively. In proofs of existence of a psi 
effect, these are the limits of signifi cance. 

Rule 5 is based on numerous meta-analyses, especially those of Radin 
and Nelson (1989, 2000), Honorton and Ferrari (1989), Dunne and Jahn 
(2003), Sherwood and Roe (2003), Williams (2011), Baptista, Derakshani, 
and Tressoldi (2015), Utts et al. (2010), Schmidt (2012), and Mossbridge, 
Tressoldi, and Utts (2012). The two last-mentioned meta-analyses deal 
with unconscious, physiologically detected psi effects, whose statistical 
evaluation was more complicated than the simple hit-or-miss scheme. We 
also use a comprehensive article by Bem (2011) as a source of data, even 
though it is not a meta-analysis. It describes nine studies, each with usually 
about 100 participants, of various retroactive psi effects, that were guessing 
tasks with the targets being randomly selected after the guessing. A recent 
meta-analysis by Bem et al. (2015) covers these studies and, as a check, 
81 similar ones. According to the authors, the effect sizes of the additional 
studies as a whole, are smaller than or practically equal to Bem’s values, 
depending on the method of analysis. I do not further discuss them because 
not all of them are based on hit-or-miss trials and effect sizes are expressed 
in a different measure (Hedge’s g).

Moreover, it appears appropriate to include the z-score of Nelson’s 
Global Consciousness Project (Nelson 2001, Nelson  et al. 2002). The 
z-scores zgcp are expressed in terms of a sum of the type 

          ,    
,    

where M is a very large number that increases with the time elapsed since 
the start of the experiment. On the basis of 500 experiments, Nelson 
reports < zgcp > = 0.3269, which is in the typical range of effect sizes (as 
of December 2015, see GCP updates online, noosphere.princeton.edu). In 
these equations, zi and z designate measured and chance values, respectively, 
the average being taken over the latter. 

In their meta-analysis of dream-psi, Sherwood and Roe (2003) 
distinguish two periods. The fi rst comprises the experiments carried out at 

2 2 2 2
1 1
( 1) / ( 1) ( 1) / 2n M
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Maimonides Medical Center Brooklyn from 1962 to 1978. It is characterized 
by many exploratory experiments and the preferred use of telepathy as ESP 
channel. The hit rate of the 450 experiments was 63% instead of a 50% 
chance probability. The second period, called post-Maimonides, lasted 
from 1977 to 2007. The 820 additional experiments differed in location and 
method, and their effect size was smaller than that of the fi rst period. In some 
cases, a large number of recipients simultaneously received the same dream 
content by telepathy from the same sender. The number of experiments was 
equated to that of the number of recipients. However, according to Rule 4, it 
should rather be one because there was a single sender. For this reason, we 
prefer < z > = 0.26, the value of the fi rst period, over < z > = 0.182, the value 
calculated by Radin (2006) for the total of 1,270 experiments. 

The < z >-scores of Bem’s studies (2011) varied within the range given 
above. In most studies, a test consisting of two questions distinguished 
between stimulus-seeking and other participants. The < z >-scores were 
computed for both groups and for the total of participants in a study. The 
stimulus-seekers were clearly more successful than the others, the averaged 
effect sizes of the groups being < z > = 0.43 and 0.10, respectively. The 
overall effect size was < z > = 0.22.

How to optimize psi effects with respect to size and replicability is 
the main subject of a meta-analysis of Baptista, Derakshani, and Tressoldi 
(2015). They consider ganzfeld-psi, card guessing, remote viewing, and 
dream-psi. The most important precondition for large effect sizes appears 
to be selection of the participants. Belief in the existence of psi effects, 
experience with psi experiments, success in previous such experiments, and 
training in meditation all are helpful. The < z >-scores of Bem’s studies 
show that being a stimulus-seeking person can be enough to achieve above-
average effect sizes. The aforementioned small but signifi cant decrease of 
< z > with increasing n, as noted by Bösch, Steinkamp, and Boller (2006b) 
in the data of Radin and Nelson, could be explained not only by breaks but 
alternatively (and less likely) on the basis of Rule 5 by a predominance of 
enthusiasm in the shorter, early PK experiments and a predominance of 
routine in the longer, later ones. 

Preliminary Rule 6:  The z-scores of very large numbers of experiments 
carried out by different groups and over a long period of time tend to 
end up in normal distributions.

The size of psi effects is not constant but undergoes fl uctuations from 
study to study. Ganzfeld-psi represents a well-investigated example of 
the type n = 1, as demonstrated, e.g., by the meta-analyses by Williams 
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(2011) and Baptista, Derakshani, and Tressoldi (2015). The < z >-scores 
of these studies more often are outside the limits of confi dence of similar 
studies than would be expected on the basis of null-effect scattering. The 
easiest way of recognizing fl uctuations of the effect size is to look at the 
experimental standard deviation σ of z which in their presence exceeds that 
of the null effect, i.e. σ > σ0 = 1. If there is a widening of the standard 
deviation, additional effort is required to gain information on the effect-size 
distribution causing it. Although indications of a scattering of the effect size 
have often been observed, there seem to be no systematic investigations of 
the affected z-score distribution functions, apart from Radin and Nelson’s 
(1989, 2000) meta-analyses and Schub’s critique thereof. 

In the subsections Scattering at Large Effect Sizes per Trial and 
Comparisons with Experimental Data in the Calculations section, I 
will presuppose normal distributions of the scattered effect size, thereby 
permitting a lowering of the effect size by homogenization and elimination 
of outliers. Calculations with an acceptable effort are possible only with 
normal distributions. From the experimental point of view, the assumption 
that they are at least reasonable approximations can be inferred only from 
Radin and Nelson’s meta-analyses, the criticisms of which have been pointed 
out above. The same applies to the assumption that the energies of shifting 
and widening the distribution of the z-scores are equal or proportional to 
one another. 

Calculations

Unlimited Defi nitions of Eff ect Size

The starting point of all calculations is the binomial distribution. I consider 
n equal trials of the same chance hit rate p. It does not matter at this point 
whether they belong to a single experiment with n trials or a series of n 
equal one-trial experiments. The possible total numbers of hits are k = 0, 1 
2, . . . . . . . , n. The probability of exactly k hits may be expressed by the term 
Bn,p (k) of a binomial distribution: 

                                                                                                     
        

(4)                                                                                                                                                      
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It is, as may be said, normalized to unity.
The expectation value of the hit number is np. The term k = np (or 

the one next to np) is the term with the  largest probability. According to 
the DeMoivre-Laplace theorem, the binomial distribution asymptotically 
approaches, for n → ∞ but some fi xed x in k = np +                             a normal 
distribution of the probability density

  
                                                            .

      

2

,
1 ( )( ) exp

2 (1 )2 (1 )n p
k npw k
p p np p n

 
                                

(6)  

  

Its integral over k is equal to unity. This holds exactly only if the integral 
reaches from −∞ to +∞.  In the present case it is restricted to the interval 
0 ≤ k ≤ n. Equation (6) can also be read as a discrete probability function, 
the sum over all integers k tending to unity for n → ∞. Insertion of Equation 
(1) into Equation (6) leads to the standard form of the normal distribution

                                21( ) exp( / 2),
2

w z z


 
                             

(7)       
    

where z is usually regarded as a continuous variable.  
The chance probability of obtaining, at the chance hit rate p with n trials 

nh hits, is given by Bn,p(nh). The quantity of interest is the ratio Qn,p(h) of the 
probabilities of this state to that of the ground state, i.e. the most probable 
state. All states Bn,pʹ (nhʹ) with arbitrary 0 < hʹ < 1 lend themselves as ground 
states. The probabilities of these ground states are not exactly equal but 
differ by the factor 1 / (1h' h' . The natural choice may seem to be hʹ = 
p so that ground state and excited state, i.e. state of lower probability, have 
the same chance hit rate p. However, the more convenient choice is hʹ = h 
because then all the factorials cancel each other. This leads immediately to
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It does not matter that the binomial terms Bn,p(nh)Bn,h(nh) belong to different 
binomial series, because the sum of each series is normalized to unity. 
Taking logarithms, one may write

(1 )x np p
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(10)

This function of h and p has its minimum at h = p with η(p,p) = 0. If one 
chooses Bn,p (np) instead of Bn,h (nh) as the ground state, one has to add on 
the right side of Equation (9) the term (1/2) ln{p(1 – p) / [h (1 – h)]}. This 
follows from Stirling’s formula applied to Bn,h (nh) / Bn,p (np) as well as from 
the factors preceding the exponentials of the probability normal distributions. 
The additional term does not depend on n, thus being negligible at large 
n. It disappears if instead of the probability ratios between the individual 
states of maximum probability one considers the ratios of the products of 
this probability and the respective standard deviation (or a fraction thereof).
Moreover, it is completely avoided when Equation (10) is deduced on the 
basis of a single-trial approach, as will be done below (see Equation (18)). 
Equation (10) without the second term can also be derived in terms of the 
physics of the isothermal ideal gas2. In a slightly modifi ed form, it is a special 
case of the Kullback-Leibler distance or relative entropy. Accordingly, the 
formula of the probability ratio to be employed in the following is 

 
                           , ( ) exp[ ( , )}n pQ h n p h 

    .                            (11)

In statistical thermodynamics, the probability of a state being occupied 
is proportional to the Boltzmann factor, another exponential function. Its 
exponent is –E/kBT, where E is the energy of the state, kB Boltzmann’s 
constant, and T the absolute temperature. Obviously, –lnη(p,h) may be 
interpreted as the entropic free energy of a state minus that of the ground 
state, both per trial and divided by kBT. A temperature dependence of psi 
effects is not known. If E/kBT is independent of temperature, E must be 
proportional to kBT. For convenience, η(p,h) will sometimes simply be 
called energy. 

The function η(p,h) represents the energy per trial required to bring the 
hit rate from the chance value p to the actual value h. It can be expanded 
into a power series of (h − p). Omitting the terms of higher than quadratic 
order in (h − p), one obtains

 

η
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i.e. the quadratic approximation of η(p,h). Comparison of Equation (12) 
with Equation (1) leads to    

    
                                                                                                

 ,                                     
(13)

                                  

the subscript n = 1 indicating one-trial experiments. The function η(p,h) is 
defi ned only in the interval 0 ≤ h ≤ 1 where it is fi nite everywhere. However, 
the derivatives of η(p,h) with respect to h diverge at the limits of h. The fi rst 
two derivatives are

    
         ( , ) / ln[ (1 ) / (1 )]d p h dh h p p h     ,                 (14)      
                          

and
                
                               2 2( , ) / 1 / (1 ).d p h dh h h                          (15)

Also of interest will be the fi rst derivative of ηqu(p,h)

                    qu ( , ) / ( ) / (1 )d p h dh h p p p                
           (16)    

For small enough  | h − p |, the functions ηqu(p,h) and η(p,h) are practically 
identical. The defi nition of the effect size by <zn=1> becomes questionable 
to the extent that η(p,h) and its quadratic approximation ηqu(p,h) differ from 
each other. Any redefi ned effect size should be unlimited but merge with 
the quadratic approximation at small sizes. Two modifi ed defi nitions of the 
effect size satisfying these requirements are proposed next. They are based 
on physically inspired concepts of the psi effects that might be called fi eld 
model and momentum model. 

Beginning with the fi eld model, let me imagine the psi effect to be 
caused by the psi fi eld
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In equilibrium, a psi fi eld κ > 0 shifts the minimum of the total one-trial 
energy η(p,h) – κ(p,h)h from h = p to some h > p. The quantity κ(p,h) is 
reminiscent of a physical force. However, a force can be defi ned as the 
negative derivative of energy with respect to length, while κ(p,h) is the 
positive derivative with respect to hit rate. The dimension of κ(p,h) is again 
energy in units of kBT as h is a dimensionless quantity. Its meaning becomes 
apparent by expanding the fraction in Equation (17) by a suffi cient number 
n of trials and writing the result as an equation of differences, Δ(nη(p,h)) = 
κ(p,h) Δ(nh). The number of hits must be a natural number between 0 and n. 
A decrease of this number by 1, i.e. Δ(nh) = 1, is accompanied by the release 
of the energy κ(p,h) which at equilibrium is exactly what is absorbed by 
the system when a miss is converted into a hit. The fact that κ is a released 
energy implies that the ratio of the probability of a trial being a hit to that 
of being a miss or, in other words, the rate of hits to the rate of misses, is 
peκ/(1−p), where eκ = exp[−(−κ)] represents the “Boltzmann factor” of the 
energy, –κ(p,h). This results in the following formula for h:

    
                                                                                                       

.
         (18)

Solving Equation (18) for κ(p,h) that is subsequently substituted by Equation 
(17), leads, in fact, back to Equation (14) and fi nally Equation (10). The last 
form of Equation (18) serves to show that it is easier to compute h as a 
function of κ than the other way round. 

The limited hit rate h is a one-to-one function of unlimited κ(p,h) or 
(1 ) ( , )p p p h that merges with its quadratic approximation (see Figure 

1 below). In the quadratic approximation, the psi fi eld κ(p,h) takes the form
 
 

                                                       
(19)    

    
                                    

that is bounded because of the limits of h. In an x/y plot, the psi fi eld shifts 
the parabolic potential ηqu(p,h) over the (horizontal) distance (h − p), thereby 
lowering without deforming it. 

The effect size can be expressed by (1 ) ( , )p p p h  or by the fi eld 
κ(p,h). Although direct use of the psi fi eld κ as effect size may seem 
attractive (and is made in Figure 1), practical reasons argue for keeping 

(1 ) ( , )p p p h , as long as it is not known which of the two variants, if any, 
is the correct one. Otherwise, all effect sizes < z > reported in the literature 
would have to be magnifi ed by the factor 1/ (1 )p p to convert them into κ. –
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A more comfortable alternative would be to use κ/2 as the new effect size. 
The correction factor would then be                            , so that the numbers 
do not change for p = ½, the most often investigated case. Whenever p ≠ ½, 
both κ or κ/2 are larger by this factor than their values at p = ½. For p  = ¼, 
the factor is 1.15.

In the other model allowing effect sizes of unlimited size, the psi effect 
is caused by a momentum s that is the new effect size. It could be carried by 
a particle with the kinetic energy s2/2m hitting the system at a particular trial. 
The mass m is equated to unity so that the maximum transferable energy is 
½ s2. At the beginning, the system is thought to be in the ground state with 
the potential η(p,p) = 0. The momentum excites the z-score of the trial in the 
direction of its sign and is assumed to be completely absorbed by the system 
if the hit rate associated with the energy does not exceed the limits h = 1 or 
h = 0. Within this range, s is defi ned by the equation

Figure 1.   Hit rate h as a function of the psi fi eld κ = dη(p,h)/dh. The curved 
lines represent the dependence of h on κ when the exact energy η(p,h) 
is used. In the approximate calculations, each curved line is replaced 
by three pieces of straight lines. The central one of them derives from 
the quadratic approximation ηqu(p,h) of the exact energy, the horizontal 
ones represent the limiting hit rates 0 and 1. The two structures refer to 
p = ½ (left) and p = ¼ (right). The psi fi eld κ equals

 qu( ) / (1 )h p p p 
(see main text).
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                                          2 ( , )s p h    .                                                    (20)   
 

If the quadratic approximation holds, the momentum obeys
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Beyond its mergers with one of the limits of h, h(p,s) is assumed to 
continue on one of the straight lines representing h = 1 or 0, depending 
on whether s increases or decreases, respectively (see Figure 2 below). 
This implies trimming away any parts of h(p,s) that exceed the limits of 
h. A questionable simplifi cation of the momentum model is the disregard 
of the null-effect fl uctuations. Despite the apparent superiority of the fi eld 
model, I will continue to consider both models, because it is an entirely 
open question how psi works. Neither model removes the mystery from psi, 
they only move it to an earlier moment in the chain of events.

When could it be necessary to go beyond the quadratic approximation? 
Probably only when the hit rate h associated with κ or s is near its limits at 
1 and 0. From now on, I will distinguish between the number of trials, n, 
and the number of experiments, N. The condition just stipulated is certainly 
not satisfi ed by experiments consisting of many trials. According to Rule 4, 
the effect size per experiment, < z >, may be expected to break up into an 
effect size per trial of < z > / n , a quantity that rapidly decreases with the 
number of trials. A rise of n from 1 to 2 already makes a great difference. 
Therefore, the limits of h interfere the most in one-trial experiments, the 
only case of low n to be considered in the following. Incidentally, fi elds 
and momenta varying with 1 / n result automatically if the total values are 
decomposed into n equal components in n-dimensional space. This might 
be interpreted as a physical explanation of Rule 4.

The dependences of the hit rate on the effect sizes κ and s in the case 
n = 1 are shown in the two fi gures for the two most common chance hit rates, 
p = ½ and p = ¼. Figure 1 depicts the functions h(p,κ), their curvilinear plots 
approaching the limits of h without ever reaching them. Figure 2 depicts 
the functions h(p,s). Their plots are curvilinear as long as the energy η(p,s) 
associated with s can be fully absorbed by the system. They are assumed to 
change to the horizontal straight lines representing the limits of h at 1 and 0 
where they merge with them rather abruptly. This is the basic version of the 
momentum model; two more complicated variants will be briefl y considered 
in the subsection Scattering at Large Effect Sizes per Trial. For small |h−p| 
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the curvilinear functions are seen to merge with the corresponding linear 
dependences of the quadratic approximation. According to Figures 1 and 2, 
it is only near the limits of h that the new effect sizes deviate appreciably 
from < zn=1 >, the measured mean z-score. For p = ½, the deviation in the 
fi eld model is circa +15% at (h − p) = 0.3 and circa +40% at (h − p) = 0.4, in 
the momentum model it hardly exceeds +10%. For p = ¼ in the fi eld model 
it may be negative, reaching circa −20% at (h − p) = 0.5, but from there it 
rises to the positive side of < zn=1 >. The positive or negative deviations in 
the momentum model are in general smaller than those in the fi eld model. 
However, beyond the mergers the hit rate h(p,s) does not respond to further 
increases of the effect size, while in the fi eld model the limited hit rate is a 
one-to-one function of the unlimited effect size.  

The effect sizes of most one-trial experiments reported in the literature 
are so small that to a good approximation they can be expressed by < zn=1 > 
as measured. However, a substantial downward or upward deviation of the 
conjectured effect size from < zn=1 > is still possible if the effect size scatters 
so widely that part of its spectrum lies outside the range of validity of the 

Figure 2.   Hit rate h as a function of the psi momentum s, obtained by plotting

                       as a function of h. The curved lines represent the 
dependence of h on s when the exact energy η(p,h) is used. Their mergers 
with the horizontal lines h = 1 and h = −1 are too abrupt to be resolved in 
the Figure. The straight-lined approximations of h(p,s) correspond to those 
in Figure 1. The two structures refer to p = ½ (left) and p = ¼ (right). The psi 
momentum s equals                                              (see main text).
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quadratic approximation. Dealing with the scattering of the effect size is the 
next and fi nal task. Two cases will be distinguished: weak scattering that can 
be treated within the quadratic approximation and strong scattering that cannot. 

The scattering of the effect size is probably composed of three parts. 
In the fi rst place, the psi-ability or psi-sensitivity has been found to vary 
considerably among participants. Also, personal sensitivity can change 
over the course of time and with the circumstances. The investigators and 
checkers may exert another infl uence. In addition, there may be fl uctuations 
of the effect size caused by external infl uences that do not depend on the 
persons involved and may be inexplicable. Technical irregularities can arise 
from errors in the counting of the experiments. A clear distinction of these 
sources is not possible. Therefore, the total scattering will be represented by 
normal distributions in the following calculations.    

Scattering at Small Eff ect Sizes per Trial

The meta-analyses of Radin and Nelson (1989, 2000) start from the standard 
normal distribution of z-scores for the null effect at large n, as described 
by Equation (7). With a simple mathematical ansatz, one can reproduce 
the unintended widening of this distribution by a factor α that emerges in 
the meta-analysis of the PK effect in addition to the intended shift. It is 
suffi cient to assume that the effect size scatters and that the scattering obeys 
a normal distribution (Helfrich 2011) 

 
 

                                                                                                                 (22)  

where ζ is the variable part of the effect size expressed in units of z. 
Combining Equation (7), i.e. the standard normal distribution associated 
with the scattering of the null effect, and Equation (22), one obtains the 
normal distribution

 
2 2

2
1 ( )( ) exp[ ]

2 2 2
z zw z d  

 




   
  

 

                         
                          

2

22

1 ( )exp[ ],
2(1 )2 (1 )
z z

 
  

 
                        

 (23)

The standard deviation of effect-size scattering, τ, is still unknown, but 
comparison of Equation (23) with the result of Nelson and Radin’s meta-
analysis immediately leads to

2 21( ) exp( / 2 ),
2

w   
 

 
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2 21 .                                                  (24)

Insertion of α = 1.5 yields τ = 1.18. Evidently, the normally distributed 
effect size scattering does not affect the measured values of < z > and h, 
despite the fact that they are averages of mean values in its presence. 

How large is the probability ratio φ(< z >,α) per experiment for the 
transition from distribution Equation (7) to distribution Equation (23)? 
The probability ratio of a transition from z = 0 to a particular z-score in 
the widened distribution is α exp(−(z2 −1) / 2). The factor α > 1 takes into 
account that more states, i.e. k-values, are available per standard deviation 
in the new than in the old distribution, provided the z-scale is retained. The 
z2 term is averaged over the new distribution and < z2 > substituted by means 
of the well-known relationship α2 = < z2 > − < z >2. The result is

    
                      

2 2 2ln ( 1)( , ) exp[ ].
2

zz       
                  (25)

The number 1 in the nominator of the exponent ensures that φ(< z >,α) = 1 if new 
and old distributions are identical. Evidently, the last term in the exponent 
is the energy of shifting the normal distribution, while the preceding terms 
represent the energy of its widening. Both are, of course, energies in units 
of kBT. They happen to be practically equal for the combination of < z > = 
0.65 and α = 1.5, the values of PK on binary RNGs taken from Radin and 
Nelson’s (1989) meta-analysis. Insertion into Equation (25) yields < z >2 / 2 
= 0.22 and [lnα2 – (α2 – 1)] / 2 = 0.21. Exact equality means

                                      
2 2 2( 1) ln  =  .a z                                (26)

The derivation of the left side of this equation with respect to the widening 
(α – 1) at the point where both sides of Equation (26) are zero leads to the 
linear relationship

                                ( 1)  / 2,z                                        (27) 

Over a surprisingly wide range of < z >, it is a good approximation to 
Equation (26), the deviation of (α – 1) as calculated from Equation (27) 
relative to the value obtained from Equation (26) reaching hardly +5% at 
< z > = 1. One may wonder whether widening and shift, i.e. (α – 1) and < z 
>, are equal or proportional to each other rather than the associated energies. 

φ(< z >, α)
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Another question is whether τ should perhaps be 1 instead of 1.18, so that 
the standard deviations of null-effect and effect-size scattering are equal. 
This would be exactly valid, e.g., for the combination of < z > = 0.65 and 
α = 1.46. The uncertainties of the reported experimental data, including 
those related to homogenization, allow for many hypotheses. Additional 
problems may arise if according to some external criterion the participants 
in a study or meta-analysis can be divided into groups with different < z 
>-scores. In dealing with the scattering of large effect sizes, I will ignore 
all of these possibilities and adhere to the assumption that the energies of 
shifting and widening the normal distribution of the null effect are equal.                                                         

Scattering at Large Eff ect Sizes per Trial

The aim of these especially speculative and approximate calculations is 
to predict the averaged hit rate hav and the averaged mean z-score < z >av 
computed from hav by means of Equation (3). The subscript av serves to 
distinguish these theoretical numbers from measured hit rates and effect 
sizes. For this purpose, an idea of the statistics governing the effect sizes 
κ and s is needed: Let me simply assume the quadratic approximation to 
continue beyond the limits of h, calling the new, unlimited variable hqu. 
The approach seems plausible because externally controlled psi fi elds 
or momenta should not depend on the properties of the system on which 
they act. For the reasons given above, only one-trial experiments will be 
considered. The associated energy is
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The independent variable hqu practically coincides with h as long as 
the quadratic approximation is applicable. According to Equation (28), the 
conjectured psi fi eld is 
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while the conjectured psi momentum is
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Note the linear relationships of hqu with κ and s.The new variable, and thus 
κ and s, are thought to be normally distributed.The central value h0 of the 
hqu distribution can be determined experimentally, if it is possible to do 
equal or similar many-trial experiments with n so large that the quadratic 
approximation holds. According to Rule 4 the effect sizes of one-trial and 
many-trial experiments should be equal, which implies h0 – p = < zn»1 > 

(1 )p p . In analogy to Equation (23), the probability density of hqu is 
expressed by

                                                                                                                 (31)
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The averaged hit rate hav is the integral over hqu from −∞ to +∞ of the product 
of this function and h(p,κ) or h(p,s). While h(p,κ) is rendered in explicit 
form by Equation (18), there is no explicit form of the function h(p,s). The 
actual hit rate as a function of hqu will be designated hp(hqu), the model to 
which it applies following from the context. 

In view of the speculative character of the models and the uncertainties 
of the experimental data, it seems reasonable in a fi rst, approximate 
calculation of the averaged hit rate to prefer transparency over mathematical 
rigor. Therefore, h(p,κ) and h(p,s) are replaced by the three straight sections 
representing the straight-lined approximations of the models (see Figure 1 
and Figure 2). Coming from hqu = −∞ on the straight line h = 0, one changes 
at the intersections to the straight lines of the quadratic approximation and 
from there to the line h = 1 on which one continues up to hqu = +∞. The 
resulting function is h = hqu in the interval 0 ≤ hqu ≤ 1, while it is 0 for hqu ≤ 0 
and 1 for hqu ≥ 1. The functions h(p,s) of the basic version of the momentum 
model deviate only in their curvilinear parts from this approximation, while 
the functions h(p,κ) differ everywhere. 

In the case of the momentum model, one has to make assumptions on 
how to deal with the momenta that cannot be fully absorbed by the system. 
Three simple choices are to be considered: Excessive values of hqu are either 
trimmed off to the next absorbable value, thus becoming h = 0 or 1, as was 
done above to defi ne the basic version of this model, or they are lost and the 
loss is compensated so that the integral of the probability density remains 
unity. Trimming is the simplest method and more compatible with physics 
than the other two. Compensation is achieved by assuming for the lost 
parts of the spectrum the value of the null effect, h = p, or by multiplying 
what is left of the spectrum by a renormalization factor. The two variants 
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of the momentum model with lost but compensated excessive momenta 
are included because they yield the strong reduction of < z > in single-
trial experiments that was originally inferred from the experimental data. 
However, they require modifi cations of the function h(p,s) representing 
the basic, i.e. trimmed, version of this model. If the null effect serves as 
compensation, h cannot remain at the values 1 or 0 once these limits are 
attained. Instead, both values have to be substituted by p beyond the mergers 
or, in the rectilineaer approximation, intersections with the lines h = 1 
or 0. Such a breakdown of the psi effect beyond its extrema would mean 
that excessive momenta pass the system without leaving a trace. While this 
appears unlikely, it cannot be entirely ruled out on the basis of presently 
available data. The renormalization variant requires modifi cations even less 
acceptable from the physics point of view. 

Three integrals of the probability density, Equation (31), which can be 
regarded as areas, are needed for the calculation of hav, the averaged hit rate. 
The areas between hqu = −∞ and hqu = 0, hqu = 0 and hqu = 1, hqu = 1 and hqu 
= +∞ will be called AL, AM, AR, respectively. For instance,

 
                                                                                                                 (32)                                                                                       
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Of course, the sum of the three areas equals unity. The integrals AL and 
AR are the probabilities of the hit rates h = 0 and h = 1, respectively. The 
integral of the product of hqu and the probability density, Equation (31), 
from hqu = 0 to hqu = 1,

                                                                                                                 (33) 
                                        

              
is the (unrenormalized) contribution to hav of the interval between h = 0 and 
h = 1. An elementary integration yields

                    (34) 
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Combining the contributions, one obtains in the fi eld model and the 
momentum model with trimming the averaged hit rate

                                                                                                          (35)
                                     av ,M Rh h A                                                                           
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where the second term represents the contribution of the straight line h = 1. 
In the variants of the momentum model where excessive momenta are lost, 
one fi nds 

                                 av (1 ),M Mh h p A                                     (36)      
           

if the loss is compensated by the null effect, and

               
                                           av /M Mh h A  ,                                     (37)

if it is compensated by renormalization.
Two sets of averaged hit rates calculated from Equations (35) to (37) 

and  ratios          
   

                                 where                 =       (            )                 

(1 )p p  is the averaged < z >-score, are listed in Table 1. The ratio R serves 

as the correction factor of               that brings it down (or up) to                  ,
it is unity in the quadratic approximation. The calculations refer to the value 
pairs < z > = 0.65 with α = 1.5 measured at n » 1 and < z > = 0.4066 with 
α = 1.3. The fi rst pair nearly and the second one exactly satisfy Equation 
(26). Only positive < z >-scores at the chance hit rates p = ½ and ¼ are 
considered. For p = ¼, the corrections are little, i.e. R remains close to unity. 
There are small reductions (R < 1) for < z > = 0.65 and small enhancements 
(R > 1) for < z > = 0.4066. The latter are due to the fact that for h0 < 0.5, 
a larger part of the scattering spectrum lies on the left of the range 0 < hqu < 1 
than on the right. More interesting are the results for p = ½, where R is 
generally reduced, apparently tending to unity with decreasing (h0 − p). The 
reductions listed in Table 1 are particularly distinct in the case < z > = 0.65, 
ranging from 0.60 in the approximate fi eld model and the momentum model 
with trimming to R = 0.13 in the momentum model with compensation by 
the null effect.   

In the fi eld model, the hit rate hp(hqu) deviates markedly from the 
straight-lined approximation. Therefore, exact integrations over hqu of the 
products wp(hqu)hp(hqu) were done in addition (by online integration). The 
values of hav and R thus calculated are in the last column of Table 1, next to 
those obtained for the fi eld model and the trimmed momentum model in the 
straight-lined approximations. For p = ½ the averaged hit rates in the last 
column are smaller by about 10% than those of the approximation. For 
p = ¼ they are larger by up to 20% in the range between hqu = ¼ and hqu = 1,
probably because of the pronounced upward bulge of hp(hqu) relative to 
h = hqu that is visible in Figure 1.
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One would like to know which of the proposed models, if any, is correct 
or at least makes the best predictions. From the physicist’s point of view, 
the fi eld model appears much more attractive than any of the three variants 
of the momentum model. The variant with trimming is the most plausible 
choice among them. However, the excessive parts of the conjectured true 
effect size are trimmed away and not detectable. The following comparisons 
of theory and experiment are an attempt to fi nd the most likely model.    

Comparisons with Experimental Data      

As already mentioned, in an earlier paper by the author the question arose 
whether the limits of the hit rate at 0 and 1 can diminish the measured < z > in 
comparison to what it would be without this limitation (Helfrich 2011). The 
reason was the great difference between < z > = 0.65 as obtained in the meta-
analyses of PK experiments on binary RNGs by Radin and Nelson (1989, 
2000) and < z > = 0.182 as calculated by Radin (2006) from the dream-psi 
data of Sherwood and Roe (2003), both belonging to the class p = ½. Their 
ratio is 0.28, calling for a correction factor R of about this size to reduce < zn»1 > 
= 0.65 to < zn=1 > = 0.182. The momentum model with losses compensated 

 TABLE 1

Calculated Approximate Values of h
av

 and R =  < z > / < z
n>>1

 > =  (h
av

 – p) /          

(h
0
 – p) for the Three Variants of the Momentum Model and the Field Model 

Momentum model with approximate 
rectilinear h(h

qu
) = 0, h

qu
 or 1

Excessive effect sizes

Field model* 
with exact 
curvilinear 
h(h

qu
)

lost but compensated by

 null effect         renormalizing

  trimmed

p = 1/2 hav 0.542 0.576 0.696 0.677

< z > = 0.65, α  = 1.5 R 0.13 0.23 0.60 0.54

p = 1/2 hav 0.557 0.580 0.653 0.634

< z > = 0.4066, α  = 1.3 R 0.28 0.39 0.75 0.66

p = 1/4 hav 0.431 0.510 0.522 0.551

< z > = 0.65, α  = 1.5 R 0.64 0.92 0.97 1.07

p = 1/4 hav 0.427 0.464 0.439 0.475

< z > = 0.4066, α  = 1.3 R 1.00 1.21 1.07 1.28

* The values of the momentum model with trimming in the next-to-last column apply, as approximations, also 
to the field model. 
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by renormalization would almost exactly and that with losses compensated 
by the null effect more than fulfi ll this requirement. However, the ratio 
R differs much less from unity if from the PK data only the quarter of 
the experiments with the largest values of n is taken into account for 
which < z > = 0.41 (Bösch, Steinkamp, & Boller 2006), and at the same 
time the result for dream-psi is elevated to the Maimonides value < z > 
= 0.26 for the reasons given in the section Conjectured Rules. In order to 
obtain < zn=1 > from < zn»1 >, the latter is now multiplied by R = 0.75, the 
correction factor for α = 1.3 and < z > = 0.4066 applicable in the momentum 
model with trimmed momenta and in the rectilinear approximation of the 
fi eld model in the case p = ½ (see Table 1). In view of the small difference 
between < zn=1 > = 0.26, which is a measured value, and < zn=1 >av = 0.31, 
the calculated value for non-existent one-trial PK experiments, one could 
speak of good agreement between theory and experiment. The agreement 
is even better for the exact fi eld model with R = 0.66 leading to < zn=1 >av 
= 0.27. These considerations suggest that the reduction of the measured 
< z >-score can indeed be explained by the limitations of the hit rate, even 
without assuming compensated losses. The numbers slightly favor the exact 
fi eld model over the momentum model with trimmed momenta.   

Another comparison concerns the distance between the < z >-scores of 
dream-psi (p = ½) and ganzfeld-psi (p = ¼). In both cases, the experiments 
consist of a single trial (n = 1). Radin (2006) adopted for dream-psi (h − p) = 
0.091 and for ganzfeld-psi (h − p) = 0.07, which correspond to < z > = 0.182 and 
0.162, respectively. This difference could well be explained by the decrease 
of 15% to be expected if instead of < z > the psi fi eld κ is independent of 
the chance hit rate p. However, in the preceding paragraph the larger mean-
score of dream-psi deduced from the experiments at Maimonides, < z > = 
0.26, was preferred. With this value, the effect size of ganzfeld-psi would 
be 35% less than that of dream-psi. All these z-scores are measured < zn=1 > 
values. For a comparison in terms of many-trial experiments, one has to 
multiply these values of < zn=1 > by the associated inverted correction factors 
1/R to obtain < zn»1 >re, another calculated quantity (the subscript re means 
reversal). Taking the values of R for < z > = 0.4066 from Table 1, one fi nds 
that regardless of the model the procedure would add slightly to the size of 
the discrepancy. I cannot rule out that the large difference is due to an effect-
size fl uctuation, but consider this to be not very likely. In order to escape a 
breakdown of Rule 5, let me invoke a possible reason that is the opposite of 
counting too many trials. The temporal distance of about an hour between 
ganzfeld experiments may be too small for their reliable separation, and as 
a consequence two experiments might fuse into a single one whenever the 
participant does not change. Studies without such a change are mentioned 
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in the literature (see, e.g., Bem & Honorton 1994), but in general there is 
no attention paid to the problem of separation. Incidentally, Radin’s value 
of the ganzfeld hit rate, h = 0.32, is corroborated by other authors. Williams 
(2011) obtains h = 0.31 in his meta-analysis, while Utts, Norris, Suess, and 
Johnson (2010) and Storm, Tressoldi, and DiRisio (2010) fi nd h = 0.334 
and 0.32, respectively. The meta-analyses differ by the selection of the data. 
Radin’s value lies in the middle of the others. 

The comparisons just made may be regarded as naïve because they 
neglect the large standard errors and wide confi dence intervals linked with 
the statistical error of the null effect. For instance, with 200 experiments, 
the 95% confi dence interval (two-tailed) of the < z >-score remaining after 

N experiments, ±1.96 
(1 )p p

N
  , is ±0.06 at p = ¼ and ±0.07 at p = ½. The 

scattering of the effect size makes standard error and confi dence interval 
even larger. Without effect-size scattering, the confi dence interval of the 
< z >-score of the 450 Maimonides dream-psi experiments, < zn=1 > = 0.26, 
would be 0.046.

In the article referred to at the beginning of this section, an attempt 
was made to explain the extraordinarily high < z >-scores found in the ball 
drawing test of Ertel (2005), a case of ESP with p = 1/5, and PK-infl uenced 
dice throwing with p = 1/6 meta-analyzed by Honorton and Ferrari (1989). 
They were < z > = 0.79 and < z > = 0.917, respectively, both measured at 
large n. For this purpose an ad hoc model was proposed in which < z > 
diverges as p tends to zero. The rules proposed in the present paper do not 
permit a divergence of < z >, which would be strange anyway. Provided 
Rule 4 applies, it seems much more likely that the experiments in question 
were interrupted quite frequently.

Conclusion

In the present paper, six rules presumably or conjecturally holding for 
statistical psi effects have been formulated. Mainly experiments consisting 
of hit-or-miss trials, with the chance hit rates p = ½ or p = ¼, were taken 
into consideration. The fi rst three rules relate to the absence of dependences 
on spatial and temporal distances and to the impossibility of markedly 
increasing the effect size by a collaboration of more than one participant 
where only one is needed; these three rules appear to be fi rmly established. 
The same applies to the fourth rule, but clear specifi cations of what is needed 
for the separation of two subsequent experiments with regard to temporal 
distance and change of participant or participants between experiments 
are still missing. The fi fth rule claims that all statistical psi effects, at least 
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those analyzable in terms of hit rates, are of roughly equal size and that the 
scattering of the effect size is about as strong as the size itself. The two parts 
of the rule were combined because the scattering emerges in measurements 
of the effect size. More data on effect sizes and in particular on effect-size 
scattering are required for a more precise formulation of this rule and for a 
fi nal judgement on its validity. There seem to be only three meta-analyses 
in the literature that present histograms of the z-score distributions (Radin 
& Nelson 1989, 2000, Schub 2006). The sixth rule is preliminary and 
speculative, because its claim that these distributions tend to be normal ones 
is based on the results of essentially the fi rst two of these meta-analyses. 

The primary purpose of the calculations was to deal with the possibility 
of effect sizes per trial being too large to be defi ned by the mean z-score 
< z > that like the hit rate h cannot transgress upper and lower limits. Two 
unlimited effect sizes were derived from different models of the psi effect 
on condition that they merge with < zn=1 > as h − p approaches zero. In the 
fi eld model the limited hit rate is a one-to-one function of the unlimited 
effect size. The deviations of the conjectured true effect size from < z > 
in this model were estimated from Figure 1 to become substantial in one-
trial experiments at hit rate p = 1/2 when < zn=1 > rises above 0.5. From 
Figure 2 it was deduced that they are relatively small in the momentum 
model up or down to the points where h as a function of the conjectured 
effect size merges with the lines h = 1 or h = 0. Any further increase of 
the effect size beyond these points cannot be detected in the momentum 
model. A direct check of these predictions to identify the right model is as 
yet impossible because of the scattering of the effect size and a lack of data 
suitable for meaningful comparisons. For an indirect check, I included this 
scattering in the calculations, assuming normal distributions of effect sizes. 
The fi rst of two comparisons between theory and experiment suggests that 
the fi eld model is the better choice. The numbers differ too little to allow a 
fi nal decision. The second comparison deals with a possible dependence of 
the effect size on p in the fi eld model and seems to lead to a confl ict with 
Rule 5, i.e. the hypothesis of the approximate equality of effect sizes. An 
experimental reason for this disagreement may be insuffi cient separation of 
the ganzfeld-psi experiments resulting in a decrease of their actual number.

The effect sizes of statistical psi are of a magnitude that permits them 
to noticeably infl uence the outcome of an experiment, but not large enough 
to prove the action of psi by a single experiment. A philosophical and at the 
same time practical reason for this constraint is obvious. Stronger effects 
could permit us to mentally control (Helfrich 2007) and supervise each 
other. This would be in confl ict with our freedom. We like to believe in 
the power of good wishes and prayers, but at the same time insist on our 
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autonomy and privacy. In a sense, the uncertainties of psi might reconcile 
these contradictory demands. 

Statistical psi effects are independent of physical laws but do not directly 
violate them. They utilize the randomness of non-equilibrium states that 
continually allows choosing among different paths of development. How 
psi works and the path toward a goal it selects remain mysteries. One may 
assume that it avoids detours and prefers paths of high probability (which 
might be another rule). Physics took a long time to recognize the failure 
of determinism and replace certainties with probabilities. Parapsychology 
questions this achievement by allowing an infl uence on randomness. 
Perhaps parapsychology reveals a bridge between the mind and the material 
world, in particular the brain. It is astonishing that philosophy and the 
offi cial churches take hardly any notice of these perspectives. The more 
rules parapsychology can be shown to obey, the more readily it will be 
respected by the exact sciences. Therefore, one may hope that it will prove 
worthwhile to look for rules and with this purpose in mind even to speculate 
to some extent where the experimental data are still vague or seem to turn 
out to be incomplete.
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N ote

1  The scattering of z about < z > ≠ 0 at the psi-induced hit rate h may be 
expected to differ from that about < z > = 0 at the chance hit rate p, the 

standard deviation being (1 )h h n  instead of (1 )p p n , an effect 
that to my knowledge has not yet been observed. The reference state in 
calculations of deformational energies and chance probabilities of psi-
affected z-scores and their distributions is always the ground state with 
the chance hit rate p. 

2  Equation (10) can also be derived by means of a thought experiment with 
an ideal gas. An ideal gas consisting of n particles (taking the place of 
trials) in a cylinder of volume V can be divided by a circular impermeable 
wall into the partial volumes Vh and V(1 − h). Temperature and, in 
the beginning, pressure are the same in both. Then the wall is shifted 
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at constant temperature until the partial volumes are Vp and V(1 – p), 
respectively. The total work of compressing one partial volume (positive) 
and dilating the other (negative) is

  1(1 ) ln ln
1B

h hE nk T h h
p p

 
       

.
                           

This is identical to Equation (10). 
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